uses chemosensation to recognize a variety of odors, many of which are released by bacteria, the major food source of . Specific amphid sensory neurons are known to detect different odorants. Here we show that the AWC neuron detects the attractive odorant 1-butanol. Because few odorants that are specifically recognized by the AWC neuron have been identified, we hope that the identification of this additional odorant will facilitate studies of the role of the AWC neuron in odor detection and discrimination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775657PMC
http://dx.doi.org/10.17912/micropub.biology.001370DOI Listing

Publication Analysis

Top Keywords

awc neuron
16
awc
4
neuron attraction
4
attraction 1-butanol
4
1-butanol chemosensation
4
chemosensation recognize
4
recognize variety
4
variety odors
4
odors released
4
released bacteria
4

Similar Publications

The AWC neuron is important for attraction to 1-butanol in .

MicroPubl Biol

January 2025

Department of Neuroscience, Pomona College, Claremont, California, United States of America.

uses chemosensation to recognize a variety of odors, many of which are released by bacteria, the major food source of . Specific amphid sensory neurons are known to detect different odorants. Here we show that the AWC neuron detects the attractive odorant 1-butanol.

View Article and Find Full Text PDF

The conserved MAP3K DLKs are widely known for their functions in synapse formation, axonal regeneration and degeneration, and neuronal survival, notably under traumatic injury and chronic disease conditions. In contrast, their roles in other neuronal compartments are much less explored. Through an unbiased forward genetic screening in C.

View Article and Find Full Text PDF

Temperature Regulates Astroglia Morphogenesis Through Thermosensory Circuitry in Caenorhabditis elegans.

Glia

January 2025

State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.

Astrocytes are the most abundant type of macroglia in the brain and play crucial roles in regulating neural development and functions. The diverse functions of astrocytes are largely determined by their morphology, which is regulated by genetic and environmental factors. However, whether and how the astrocyte morphology is affected by temperature remains largely unknown.

View Article and Find Full Text PDF

Aberrant neuronal hyperactivation causes an age-dependent behavioral decline in .

Proc Natl Acad Sci U S A

January 2025

Group of Microbial Motility, Department of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.

Age-dependent sensory impairment, memory loss, and cognitive decline are generally attributed to neuron loss, synaptic dysfunction, and decreased neuronal activities over time. Concurrently, increased neuronal activity is reported in humans and other organisms during aging. However, it is unclear whether neuronal hyperactivity is the cause of cognitive impairment or a compensatory mechanism of circuit dysfunction.

View Article and Find Full Text PDF

Adult single-nucleus neuronal transcriptomes of insulin signaling mutants reveal regulators of behavior and learning.

Cell Genom

December 2024

Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA. Electronic address:

Gene expression in individual neurons can change during development to adulthood and can have large effects on behavior. Additionally, the insulin/insulin-like signaling (IIS) pathway regulates many of the adult functions of Caenorhabditis elegans, including learning and memory, via transcriptional changes. We used the deep resolution of single-nucleus RNA sequencing to define the adult transcriptome of each neuron in wild-type and daf-2 mutants, revealing expression differences between L4 larval and adult neurons in chemoreceptors, synaptic genes, and learning/memory genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!