Bioremediation of trichloroethene (TCE)-contaminated sites often leads to groundwater acidification, while nitrate-polluted sites tend to generate alkalization. TCE and nitrate often coexist at contaminated sites; however, the pH variation caused by nitrate self-alkalization and TCE self-acidification and how these processes affect nitrate reduction and reductive dichlorination, have not been studied. This study investigated the interaction between nitrate and TCE, two common groundwater co-contaminants, during bioreduction in serum bottles containing synthetic mineral salt media and microbial consortia. Our results showed that TCE concentrations up to 0.3 mM stimulated nitrate reduction, while the effect of nitrate on TCE reductive dechlorination was more complex. Nitrate primarily inhibited the reduction of TCE to dichloroethene (DCE) but enhanced the reduction of vinyl chloride (VC) to ethene. Mechanistic analysis suggested that this inhibition was due to the thermodynamic favorability of nitrate reduction over TCE reduction, while the promotion of VC reduction was linked to pH stabilization via self-alkalization. As the initial nitrate concentration increased from 0 to 3 mM, the relative abundance of putatively denitrifying genera, such as and , increased. However, the abundance of fermentative sharply declined from 31.11 to 1.51%, indicating strong nitrate inhibition. Additionally, the relative abundance of , a genus capable of reducing TCE to ethene, slightly increased from 23.91 to 24.26% at nitrate concentrations up to 0.3 mM but decreased to 18.65% as the nitrate concentration increased to 3 mM, suggesting that exhibits a degree of tolerance to high nitrate concentrations under specific conditions. Overall, our findings highlight the potential for simultaneous reduction of TCE and nitrate, even at elevated concentrations, facilitated by self-regulating pH control in anaerobic mixed dechlorinating consortia. This study provides novel insights into bioremediation strategies for addressing co-contaminated sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11778175PMC
http://dx.doi.org/10.3389/fmicb.2024.1504235DOI Listing

Publication Analysis

Top Keywords

nitrate
14
nitrate reduction
12
reduction tce
12
tce
9
interaction nitrate
8
tce nitrate
8
reduction
8
nitrate tce
8
concentrations 03 mm
8
nitrate concentration
8

Similar Publications

This study aims to evaluate the implementation of concomitant CAD assessment on pre-TAVI (transcatheter aortic valve implantation) planning CTA (CT angiography) aided by CT-FFR (CT-fractional flow reserve) [The CT2TAVI protocol] and investigates the incremental value of CT-FFR to coronary CT angiography (CCTA) alone in the evaluation of patients undergoing CT2TAVI. This is a prospective observational real-world cohort study at an academic health system on consecutive patients who underwent CTA for TAVI planning from 1/2021 to 6/2022. This represented a transition period in our health system, from not formally reporting CAD on pre-TAVI planning CTA (Group A) to routinely reporting CAD on pre-TAVI CTA (Group B; CT2TAVI protocol).

View Article and Find Full Text PDF

The use of nitrogen-fixing bacteria in agriculture is increasingly recognized as a sustainable method to boost crop yields, reduce chemical fertilizer use, and improve soil health. However, the microbial mechanisms by which inoculation with nitrogen-fixing bacteria enhance rice production remain unclear. In this study, rice seedlings were inoculated with the nitrogen-fixing bacterium R3 (Herbaspirillum) at the rhizosphere during the seedling stage in a pot experiment using paddy soil.

View Article and Find Full Text PDF

Mechanisms underlying the interactions and adaptability of nitrogen removal microorganisms in freshwater sediments.

Adv Biotechnol (Singap)

June 2024

Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China.

Microorganisms in eutrophic water play a vital role in nitrogen (N) removal, which contributes significantly to the nutrient cycling and sustainability of eutrophic ecosystems. However, the mechanisms underlying the interactions and adaptation strategies of the N removal microorganisms in eutrophic ecosystems remain unclear. We thus analyzed field sediments collected from a eutrophic freshwater ecosystem, enriched the N removal microorganisms, examined their function and adaptability through amplicon, metagenome and metatranscriptome sequencing.

View Article and Find Full Text PDF

Turmeric is affected by various phytopathogens, which cause huge economic losses to farmers. In the present study, ten isolates of Pythium spp. were isolated from infected turmeric rhizomes and characterized.

View Article and Find Full Text PDF

Extensive agricultural regions commonly face issues of poor groundwater management, non-standard agricultural production practices, and unordered discharge of domestic pollution, leading to a continuous decline in groundwater quality and a sharp increase in risks. A comprehensive understanding of groundwater conditions and pollution is a crucial step in effectively addressing the water quality crisis. This study employs the Comprehensive Water Quality Index, Irrigation parameter, and Pollution Index to comprehensively investigate the groundwater quality in a typical agricultural area in Shandong, China, and assesses the suitability of groundwater for irrigation and the risks to human health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!