Introduction: strain NQ8GII4 is an endophytic fungus with significant potential for improving growth and disease resistance of alfalfa. However, the molecular mechanisms underlying the symbiotic relationship between NQ8GII4 and alfalfa roots remain poorly understood.

Methods: In this study, we conducted (1) a comparative genomic analysis of selected saprophytic, pathogenic, and endophytic fungi, including molecular phylogeny analysis, whole-genome alignment, and divergence date estimation positioning, and (2) transcriptomic profiling of alfalfa roots infected with NQ8GII4.

Results: Our findings reveal that NQ8GII4 is genetically closely related to , suggesting it diverged from phytopathogens. During the early stages of symbiosis establishment, genes encoding glycosyltransferases (GTs), fungal cell wall-degrading enzymes (FCWDEs), and steroid-14α-demethylase (CYP51) were significantly downregulated, potentially suppressing hyphal growth of the fungus. Once symbiosis was established, NQ8GII4 secreted effectors that activated plant immunity, which in turn could slow growth of the fungus. Moreover, genes involved in secondary metabolite biosynthesis, such as type I polyketide synthases (T1PKS) and non-ribosomal peptide synthetases (NRPSs), were significantly downregulated. Homologs of autophagy-related genes, including , and others, were also downregulated, suggesting that reduced phytotoxin production and autophagy inhibition is a consequence of NQ8GII4's symbiosis.

Discussion: This study investigated the comprehensive molecular and genetic mechanisms governing the interaction between NQ8GII4 and alfalfa roots. Beyond the NQ8GII4-alfalfa system, these findings also provide a valuable molecular framework for understanding the mechanism of interactions between endophytic fungi and their host plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774914PMC
http://dx.doi.org/10.3389/fmicb.2024.1487022DOI Listing

Publication Analysis

Top Keywords

alfalfa roots
12
strain nq8gii4
8
nq8gii4 alfalfa
8
endophytic fungi
8
growth fungus
8
nq8gii4
6
endophytic
4
endophytic strategies
4
strategies decoded
4
decoded genome
4

Similar Publications

Introduction: strain NQ8GII4 is an endophytic fungus with significant potential for improving growth and disease resistance of alfalfa. However, the molecular mechanisms underlying the symbiotic relationship between NQ8GII4 and alfalfa roots remain poorly understood.

Methods: In this study, we conducted (1) a comparative genomic analysis of selected saprophytic, pathogenic, and endophytic fungi, including molecular phylogeny analysis, whole-genome alignment, and divergence date estimation positioning, and (2) transcriptomic profiling of alfalfa roots infected with NQ8GII4.

View Article and Find Full Text PDF

Effect of intra- and inter-specific plant interactions on the rhizosphere microbiome of a single target plant at different densities.

PLoS One

January 2025

Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America.

Root and rhizosphere studies often focus on analyzing single-plant microbiomes, with the literature containing minimum empirical information about the shared rhizosphere microbiome of multiple plants. Here, the rhizosphere of individual plants was analyzed in a microcosm study containing different combinations and densities (1-3 plants, 24 plants, and 48 plants) of cover crops: Medicago sativa, Brassica sp., and Fescue sp.

View Article and Find Full Text PDF

Intercropping with legume forages is recognized as an effective strategy for enhancing nitrogen levels in agroforestry, while mowing may influence nitrogen fixation capacity and yield. This study investigated the rooting, nitrogen fixation, nutritive value, and yield of alfalfa ( L.) under intercropping and varying mowing frequencies (CK, 2, and 3) from 2021 to 2023, using walnut ( L.

View Article and Find Full Text PDF

Suppression of Nodule Formation by RNAi Knock-Down of in .

Genes (Basel)

January 2025

Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.

Background/objectives: The balanced regulation of innate immunity plays essential roles in rhizobial infection and the establishment and maintenance of symbiosis. The evolutionarily conserved cell death suppressor Bax inhibitor-1 plays dual roles in nodule symbiosis, providing a valuable clue in balancing immunity and symbiosis, while it remains largely unexplored in the legume .

Methods/results: In the present report, the gene family of was identified and characterized.

View Article and Find Full Text PDF

Background: Root rot is a major disease affecting alfalfa (Medicago sativa L.), causing significant yield losses and economic damage. The primary pathogens include Fusarium spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!