This guideline outlines the use of 3,4-dihydroxy-6-F-fluoro-L-phenylalanine positron emission tomography / computed tomography for the diagnosis and management of neuroendocrine tumors, brain tumors, and other tumorous conditions. It provides detailed recommendations on patient preparation, imaging procedures, and result interpretation. Based on international standards and adapted to local clinical practices, the guideline emphasizes safety, quality control, and the effective application of 3,4-dihydroxy-6-F-fluoro-L-phenylalanine positron emission tomography / computed tomography for various tumors such as insulinomas, pheochromocytomas, and medullary thyroid carcinoma. It also addresses the use of premedication with carbidopa, fasting protocols, and optimal imaging techniques. The aim is to assist nuclear medicine professionals in delivering precise diagnoses, improving patient outcomes, and accommodating evolving medical knowledge and technology. This comprehensive document serves as a practical resource to enhance the accuracy, quality, and safety of 3,4-dihydroxy-6-F-fluoro-L-phenylalanine positron emission tomography / computed tomography in oncology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772901 | PMC |
http://dx.doi.org/10.1007/s13139-024-00899-6 | DOI Listing |
Clin Exp Metastasis
January 2025
Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
Oligorecurrent prostate cancer (PCa) can be treated with metastasis-directed therapy (MDT), which may be performed using radioguided surgery (RGS) as an experimental approach. These procedures have shown promising outcomes, largely due to the high lesion detection rate of positron emission tomography/computed tomography (PET/CT). We present a case series of patients who underwent RGS following robot-assisted radical prostatectomy (RARP).
View Article and Find Full Text PDFJ Phys Chem A
January 2025
College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, China.
Developing high-performance solar cells is a practical way to improve clean energy conversion efficiency. However, the performance of solar cells faces challenges such as fast carrier combination, poor stability, and limited solar light harvesting. Herein, we propose a strategy by decorating periodic holes in two-dimensional (2D) porous carbon-nitrogen (CN) materials with a zero-dimensional (0D) semiconducting (ZnO) cluster.
View Article and Find Full Text PDFCurr Opin Cardiol
January 2025
Division of Cardiology, University of Ottawa Heart Institute, University of Ottawa, Faculty of Medicine, Tier 1 Clinical Research Chair in Cardiac Electrophysiology, Ottawa, ON, Canada.
Purpose Of Review: This review presents contemporary data on epidemiology, common presentations, investigations and diagnostic algorithms, treatment and prognosis. It particularly focuses on topics of most relevance to heart failure specialists, including what left ventricle (LV) function changes can be expected after treatment and outcomes to all standard and advanced heart failure therapies.
Recent Findings: Around 5% of sarcoidosis patients have clinically manifest cardiac sarcoidosis (CS), presenting with significant arrhythmias (such as conduction disturbances and ventricular arrhythmias) or newly developed unexplained heart failure.
J Phys Chem Lett
January 2025
Graduate School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan.
Selective modification of chemically active sites on supports, such as steps, edges, and corners, with metal nanoparticles (NPs) is a challenging topic in the fields of catalysis and photocatalysis. However, the formation of site-selective, high-density metal NPs on a support has not yet been achieved. Radial ZnO mesocrystals composed of hexagonal nanowires (NWs) with {101̅0} sidewalls were synthesized by a simple solution-phase method.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Institute for Physical Chemistry, University of Göttingen, 37077 Göttingen, Germany.
Surface science instruments require excellent vacuum to ensure surface cleanliness; they also require control of sample temperature, both to clean the surface of contaminants and to control reaction rates at the surface, for example, for molecular beam epitaxy and studies of heterogeneous catalysis. Standard approaches to sample heating within high vacuum chambers involve passing current through filaments of refractory metals, which then heat the sample by convective, radiative, or electron bombardment induced heat transfer. Such hot filament methods lead to outgassing of molecules from neighboring materials that are inadvertently heated; they also produce electrons and ions that may interfere with other aspects of the surface science experiment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!