Chronic myeloid leukaemia (CML) is primarily treated using imatinib mesylate, a tyrosine kinase inhibitor (TKI) targeting the BCR::ABL1 oncoprotein. However, the development of drug resistance and adverse side effects necessitate the exploration of alternative therapeutic agents. This study presents the synthesis and characterization of a novel imatinib analogue, 3-chloro--(2-methyl-5-((4-(pyridin-2-yl)pyrimidin-2-yl)amino)phenyl)benzamide (PAPP1). The compound's structure was elucidated using X-ray crystallography and spectroscopic techniques, including NMR, infrared and UV-visible. Crystallographic analysis reveals that PAPP1 consists of a phenyl-amino-pyridine-pyrimidine (PAPP) scaffold with substituted aromatic rings forming a nearly coplanar geometry. Additionally, supramolecular interactions in the crystal are mediated by hydrogen bonds and dispersion forces, forming dimers and layered structures. Molecular docking studies demonstrate strong binding affinity to the ABL1 enzyme, with PAPP1 showing comparable binding energy to imatinib, indicating its potential as a lead compound for further development. Computational studies, including molecular electrostatic potential and vibrational analysis, provide further support for the structural stability and bioactivity of PAPP1. These findings suggest that PAPP could be a promising scaffold for future CML drug design, offering a potential alternative to existing TKIs, and PAPP1 is a promising lead susceptible to optimization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774592PMC
http://dx.doi.org/10.1098/rsos.241654DOI Listing

Publication Analysis

Top Keywords

novel imatinib
8
imatinib analogue
8
chronic myeloid
8
myeloid leukaemia
8
papp1
5
analogue inhibitor
4
inhibitor chronic
4
leukaemia design
4
design synthesis
4
synthesis characterization-explanation
4

Similar Publications

Chronic myeloid leukaemia (CML) is primarily treated using imatinib mesylate, a tyrosine kinase inhibitor (TKI) targeting the BCR::ABL1 oncoprotein. However, the development of drug resistance and adverse side effects necessitate the exploration of alternative therapeutic agents. This study presents the synthesis and characterization of a novel imatinib analogue, 3-chloro--(2-methyl-5-((4-(pyridin-2-yl)pyrimidin-2-yl)amino)phenyl)benzamide (PAPP1).

View Article and Find Full Text PDF

Infantile myofibromatosis (IM) comprises a wide clinical spectrum, ranging from solitary or multicentric lesions to generalized life-threatening forms. IM is mostly linked to germline or somatic heterozygous mutations in the PDGFRβ tyrosine kinase, encoded by the PDGFRB gene. Treatments for IM range from wait and see approach to systemic chemotherapy, according to the clinical context.

View Article and Find Full Text PDF

Gastrointestinal stromal tumors (GIST) are the most common mesenchymal malignancy of the gastrointestinal tract. Most GIST harbor mutations in oncogenes, such as KIT, and are treated with tyrosine kinase inhibitors (TKI), such as imatinib. Most tumors develop secondary mutations inducing drug resistance against the available TKI, which requires novel therapies.

View Article and Find Full Text PDF

Background: Cuproptosis is a novel form of cell death, acting on the tricarboxylic acid cycle in mitochondrial respiration and mediated by protein lipoylation. Other cancer cell death processes, such as necroptosis, pyroptosis, and ferroptosis, have been shown to play crucial roles in the therapy and prognosis of ovarian cancer. However, the role of cuproptosis in ovarian cancer remains unclear.

View Article and Find Full Text PDF

Background: Programmed cell death (PCD) is closely related to the occurrence, development, and treatment of breast cancer. The aim of this study was to investigate the association between various programmed cell death patterns and the prognosis of breast cancer (BRCA) patients.

Methods: The levels of 19 different programmed cell deaths in breast cancer were assessed by ssGSEA analysis, and these PCD scores were summed to obtain the PCDS for each sample.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!