Trained immunity, characterized by long-term functional reprogramming of innate immune cells, offers promising new directions for veterinary vaccine development. This perspective examines how trained immunity can be integrated into veterinary vaccine design through metabolic reprogramming and epigenetic modifications. We analyze key molecular mechanisms, including the shift to aerobic glycolysis and sustained epigenetic changes, that enable enhanced immune responses. Strategic approaches for vaccine optimization are proposed, focusing on selecting effective trained immunity inducers, developing innovative adjuvant systems, and achieving synergistic enhancement of immune responses. While implementation challenges exist, including individual response variations and safety considerations, trained immunity-based vaccines show potential for providing broader protection against emerging pathogens. This approach could revolutionize veterinary vaccinology by offering enhanced efficacy and cross-protection against heterologous infections, particularly valuable for zoonotic disease control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776093 | PMC |
http://dx.doi.org/10.3389/fvets.2024.1524668 | DOI Listing |
J Inflamm Res
January 2025
Department of Anesthesiology, Zhongshan Hospital Fudan University, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, People's Republic of China.
Background: Sepsis is regarded as a dysregulated immune response to infections. Recent study showed partially reversal of immunosuppression by trained immunity, which fosters an enhanced immune response towards a secondary challenge. However, the role of trained immunity in sepsis has not been fully understood.
View Article and Find Full Text PDFFront Vet Sci
January 2025
College of Life Science, Longyan University, Longyan, China.
Trained immunity, characterized by long-term functional reprogramming of innate immune cells, offers promising new directions for veterinary vaccine development. This perspective examines how trained immunity can be integrated into veterinary vaccine design through metabolic reprogramming and epigenetic modifications. We analyze key molecular mechanisms, including the shift to aerobic glycolysis and sustained epigenetic changes, that enable enhanced immune responses.
View Article and Find Full Text PDFOpen Forum Infect Dis
January 2025
Global Tuberculosis Program, William T. Shearer Center for Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA.
Background: The BCG vaccine induces trained immunity, an epigenetic-mediated increase in innate immune responsiveness. Therefore, this clinical trial evaluated if BCG-induced trained immunity could decrease coronavirus disease 2019 (COVID-19)-related frequency or severity.
Methods: A double-blind, placebo-controlled clinical trial of healthcare workers randomized participants to vaccination with BCG TICE or placebo (saline).
SAGE Open Med
January 2025
Allergy and Immunology Service Hospitale Maternidade Therezinha de Jesus, Juiz de Fora, Brazil.
Objective: Bacterial extracts have been used for many years to prevent airway infections. Recent findings suggest that immunity can be trained by inducing an immunological memory in both the innate and acquired immune response. This real-life observational study investigated the potential of sublingual bacterial immunotherapy in the prevention of ear, nose, and throat infections.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!