Primary diamines are valuable yet challenging to synthesize due to issues such as product and intermediate condensation and catalyst poisoning. To address these problems, effective synthesis systems must be explored. Here, 2,5-bis(aminomethyl)furan (BAMF), a biomass-derived primary diamine, is chosen as the model for constructing such a system. A series of carbon-shell confined Co nanoparticles (Co@CNT-) are fabricated to synthesize BAMF. The Co@CNT-700 catalyst, with ca. 4 layers of carbon shells, achieves an outstanding 96% isolated yield of BAMF through the reductive amination of 2,5-diformylfuran dioxime. In this system, an excess NH atmosphere is necessary to prevent condensation reactions by competitive reactions, while the carbon shells protect the catalyst from NH and amine poisoning. Control experiments indicate that 2,5-diformylfuran dioxime primarily follows a H-assisted dehydration pathway to form key imine intermediates, while side products such as amides and nitriles can also eventually be converted into BAMF by Co@CNT-700, leading to its excellent selectivity. Notably, by employing a sequential three-step strategy, ca. 87% BAMF can be achieved by directly using biomass as the raw material. To evaluate the tolerance of this system, 9 other important aromatic, cycloalkyl, and linear alkyl primary diamines, such as 1,4-cyclohexanediamine, are obtained in high yields of 87-99%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c17669 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P.R. China.
Primary diamines are valuable yet challenging to synthesize due to issues such as product and intermediate condensation and catalyst poisoning. To address these problems, effective synthesis systems must be explored. Here, 2,5-bis(aminomethyl)furan (BAMF), a biomass-derived primary diamine, is chosen as the model for constructing such a system.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
Imine-containing azaarene-based triarylmethanes are vital molecular motifs that are prevalent in a wide array of bioactive compounds. Recognizing the limitations of current synthetic methodologies─marked by a scarcity of examples and difficulties in flexible functional group modulation─we have developed an efficient and modular asymmetric photochemical strategy employing pyridotriazoles and boronic acids as substrates. Utilizing novel chiral diamine-derived pyrroles and primary amines as catalysts, we successfully synthesized a diverse range of triarylmethanes with high yields and excellent enantioselectivities.
View Article and Find Full Text PDFACS Omega
January 2025
Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
Various symmetric and asymmetric imines were synthesized using the novel amine oxidase, obtained as variants of d-amino acid oxidase (pkDAO) from porcine kidney (Y228L/R283G) and (I230A/R283G). Active primary imines produced as intermediates in the oxidation of methylbenzylamine (MBA) derivatives were trapped by aliphatic, aromatic amines and diamines as nucleophiles forming new imines. ()-Fluoro-MBA was the best substrate for symmetric imine synthesis, providing almost stoichiometric conversion (100 mM) and achieving nearly 100% yield.
View Article and Find Full Text PDFCureus
December 2024
Pedodontics and Preventive Dentistry, SRM Kattankulathur Dental College, Chennai, IND.
Objective This in vitro study evaluated the impact of different time intervals on the color stability of glass ionomer cement (GIC) and composite materials bonded to teeth treated with silver diamine fluoride (SDF). Specifically, the study sought to determine if immediate or delayed application of these restorative materials affects the degree of staining caused by SDF. Materials and methods Twenty-eight extracted primary molars with cavitated lesions were randomly divided into four groups, each comprising seven samples.
View Article and Find Full Text PDFInt J Clin Pediatr Dent
November 2024
Department of Public Health Dentistry, Dr D Y Patil Dental College and Hospital, Dr D Y Patil Vidyapeeth, Pune, Maharashtra, India.
Introduction: Utilizing 38% silver diamine fluoride (SDF) has been demonstrated in clinical trials to prevent and halt early childhood caries (ECC). Based on a research evaluation, it has been found that 38% SDF can effectively prevent new tooth decay and stop existing tooth decay in children's primary teeth.
Objective: This study aimed to assess the survival of teeth treated with repeated applications of 38% SDF in children with ECC and to compare the outcomes between single and multiple applications.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!