Background: Closed head injury (CHI) provokes a prominent neuroinflammation that may lead to long-term health consequences. Microglia plays pivotal and complex roles in neuroinflammation-mediated neuronal insult and repair following CHI. We previously reported that induced neural stem cells (iNSCs) can block the effects of CXCL12/CXCR4 signaling on NF-κB activation in activated microglia by CXCR4 overexpression. Here we aim to uncover the mechanism of CXCR4 upregulation in iNSCs.
Methods: We performed bioinformatic analysis to detect the differentially expressed genes in iNSCs after co-cultured with LPS-activated microglia. Subsequently, we predicted the target genes and performed gain- and loss-of-functional studies, dualluciferase reporter, RNA immunoprecipitation, biotin-coupled miRNA pulldown, fluorescence in situ hybridization and cell transplantation assays to further elucidate the mechanism underlying the immunoregulatory effects of iNSCs. Student's t-test and one-way analysis of variance (ANOVA) with Tukey's post hoc test were used to determine statistical significance.
Results: Our results indicated that Malat1 could act as a sponge of miR-139-5p to modulate the expression of CXCR4 that exerted significant influence on the immunoregulatory effects of iNSCs on the secretion of CXCL12, TNF-α and IGF-1 by activated microglia. Furthermore, Malat1 inhibition blocked the immunoregulatory effects of iNSC grafts on microglial activation as well as neuroinflammation in the injured cortices of CHI mice. Interestingly, NF-κB activation in iNSCs augmented the immunoregulatory effects of iNSCs on microglial activation by activating the axis of Malat1/miR-139-5p/Cxcr4. Notably, we found that TNF-α secreted by activated microglia could bind to TNFR1 at the surface of iNSCs to trigger NF-κB activation in iNSCs.
Conclusions: In short, our findings reveal a novel role of Malat1 in the immunomodulatory effects of iNSCs on microglial activation, suggesting that transplanted iNSCs may self-perceive the changes of the activated state of microglia and thus make prudential regulation of the neuroinflammation following CHI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s13287-024-04116-1 | DOI Listing |
Stem Cell Res Ther
January 2025
Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
Background: Closed head injury (CHI) provokes a prominent neuroinflammation that may lead to long-term health consequences. Microglia plays pivotal and complex roles in neuroinflammation-mediated neuronal insult and repair following CHI. We previously reported that induced neural stem cells (iNSCs) can block the effects of CXCL12/CXCR4 signaling on NF-κB activation in activated microglia by CXCR4 overexpression.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Baotou, Inner Mongolia, 014010, China.
The tendon-bone interface, known as the tenosynovial union or attachment, can be easily damaged by excessive exercise or trauma. Tendon-bone healing is a significant research topic in orthopedics, encompassing various aspects of sports injuries and postoperative recovery. Surgery is the most common treatment; however, it has limited efficacy in promoting tendon-bone healing and carries a risk of postoperative recurrence, necessitating the search for more effective treatments.
View Article and Find Full Text PDFBiomaterials
January 2025
Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China. Electronic address:
The chronic inflammation and matrix metalloprotease (MMP)-induced tissue degradation significantly disrupt re-epithelization and delay the healing process of diabetic wounds. To address these issues, we produced nanofibrils from Antheraea pernyi (Ap) silk fibers via a facile and green treatment of swelling and shearing. The integrin receptors on the cytomembrane could specifically bind to the Ap nanofibrils (ApNFs) due to their inherent Arg-Gly-Asp (RGD) motifs, which activated platelets to accelerate coagulation and promoted fibroblast migration, adhesion and spreading.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
March 2025
Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.
CD4CD8 TCRαβ (double-negative [DN]) T cells represent a rare T cell population that promotes immunological tolerance through various cytotoxic mechanisms. In mice, autologous transfer of DN T cells has shown protective effects against autoimmune diabetes and graft-versus-host disease. Here, we characterized human DN T cells from people living with type 1 diabetes (PWT1D) and healthy controls.
View Article and Find Full Text PDFCell Insight
February 2025
Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
Itaconate which is discovered as a mammalian metabolite possessing antimicrobial and immunoregulatory activity has attracted much attention in the field of immunometabolism. Itaconate is synthesized by myeloid cells under conditions of pathogen infection and sterile inflammation. In addition to regulating immune response of myeloid cells, itaconate secreted from myeloid cells can also be taken up by non-myeloid cells to exert immunoregulatory effects in a cell non-autonomous manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!