Background: Fungal pretreatment for partial separation of lignocellulosic components may reduce lignocellulose recalcitrance during the production of biofuels and biochemicals. Quantitative and qualitative modification of plant lignin through genetic engineering or traditional breeding may also reduce the recalcitrance. This study was conducted to examine the effects of combining these two approaches using three white rot fungi and mulberry wood with an altered lignin structure.
Results: Mulberry wood prepared from homozygotes or heterozygotes with a loss-of-function in the cinnamyl alcohol dehydrogenase gene (CAD) was pretreated with three fungal species. Both heterozygous (CAD/cad) and homozygous (cad/cad, null mutant) mulberry plants were derived from the same parents via backcrossing between Sekizaisou (cad/cad, seed parent), a natural lignin mutant, and its F1 progeny (CAD/cad, pollen parent). Homozygote wood and the isolated lignin exhibited an abnormal color. Lignin in homozygotes without fungal pretreatment exhibited a lower syringyl/guaiacyl ratio, molar mass, and thioacidolysis product yield than those in heterozygotes. Pretreatment with Phanerochaete chrysosporium achieved the highest delignification efficiency with a significant reduction in the cellulose content in both mulberry genotypes. In contrast, Ceriporiopsis subvermispora selectively removed lignin, with a weaker reduction in the cellulose content. The degree of delignification by C. subvermispora was significantly higher in homozygotes than in heterozygotes. Trametes versicolor tended to have a lower delignification capacity and smaller effect of subsequent enzymatic sugar release toward the wood from both genotypes than the other two fungi, making it less suitable for fungal pretreatment. Thioacidolysis assays indicated that cinnamaldehyde β-O-4, a typical subunit in the homozygote lignin, did not contribute to the high degradability of the lignin. The saccharification efficiency tended to be higher in homozygote wood than in heterozygote wood under all fungal pretreatment conditions.
Conclusions: Although further optimization of various system conditions is required, our findings suggest that CAD deficiency promotes delignification and subsequent enzymatic saccharification and may improve the biorefining efficiency of wood when combined with fungal pretreatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s13068-025-02611-y | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776243 | PMC |
Metabol Open
March 2025
Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa.
Dyslipidemia is a prominent pathological feature responsible for oxidative stress-induced cardiac damage. Due to their high antioxidant content, dietary compounds, such as aspalathin and sulforaphane, are increasingly explored for their cardioprotective effects against lipid-induced toxicity. Cultured H9c2 cardiomyoblasts, an in vitro model routinely used to assess the pharmacological effect of drugs, were pretreated with the dietary compounds, aspalathin (1 μM) and sulforaphane (10 μM) before exposure to palmitic acid (0.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.
Background: Fungal pretreatment for partial separation of lignocellulosic components may reduce lignocellulose recalcitrance during the production of biofuels and biochemicals. Quantitative and qualitative modification of plant lignin through genetic engineering or traditional breeding may also reduce the recalcitrance. This study was conducted to examine the effects of combining these two approaches using three white rot fungi and mulberry wood with an altered lignin structure.
View Article and Find Full Text PDFJ Contemp Dent Pract
October 2024
Department of Dental Biomaterials, Faculty of Dental Medicine for Girls, Al-Azhar University, Cairo, Egypt, Orcid: https://orcid.org/0000-0002-3420-4146.
Aim: To assess the effect of mushrooms, ozone gas, and their combination as cavity disinfectants on the bonding strength of composite to dentin.
Materials And Methods: The study was conducted on 40 sound premolar teeth randomly divided into four groups. Group I: control group, Group II: mushroom group, Group III: Ozone group, and Group IV: mushroom + ozone gas (combination) group.
Front Immunol
January 2025
Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States.
Introduction: Recurrent uveitis (RU), an autoimmune disease, is a leading cause of ocular detriment in humans and horses. Equine and human RU share many similarities including spontaneous disease and aberrant cytokine signaling. Reduced levels of SOCS1, a critical regulator of cytokine signaling, is associated with several autoimmune diseases.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City, Taiwan.
Bladder cancer ranks as the 9th most common type of cancer worldwide. Approximately 70 % of bladder cancers are diagnosed as non-muscle invasive, and they are treated with transurethral resection followed by intravesical therapy. Doxorubicin is one of the effective cytotoxic drugs used in intravesical and systemic therapy, but its cardiotoxicity and nephrotoxicity limit therapeutic dosages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!