Background: Glia mediated neuroinflammation and degeneration of inhibitory GABAergic interneurons are some of the hall marks of pyrethroid neurotoxicity. Here we investigated the sex specific responses of inflammatory cytokines, microglia, astrocyte and parvalbumin positive inhibitory GABAergic interneurons to λ-cyhalothrin (LCT) exposures in rats.
Methods: Equal numbers of male and female rats were given oral corn oil, 2 mg/kg.bw and 4 mg/kg.bw of LCT for fourteen days. They were euthanized on day 15, brains were excised and hippocampus (n = 5/group) isolated for interleukin 1 beta (IL-1β) and tumor necrotic factor alpha (TNF-α) analysis. The remaining brains (n = 3/group) were processed for Ionized calcium binding adaptor molecule 1 (Iba1), glial fibrillary acidic protein (GFAP) and parvalbumin (PV) distribution in the hippocampus. All quantitative data was subjected to one way analysis of variance (ANOVA).
Results: LCT caused sex and dose dependent increase in IL-1β and TNF-α concentrations, distribution of microglia (Iba1+) and astrocytes (GFAP+), and reduction of PV + GABAergic interneurons. These effects were greater in males compared to females, and dose-dependent in both sexes.
Conclusion: LCT specifically induced inflammation and disrupted GABAergic interneurons' integrities via activation of microglia and reactive astrogliosis and such effects are dose-dependent and sexually dimorphic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s40360-025-00860-z | DOI Listing |
Front Mol Neurosci
January 2025
Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
Introduction: The neuron-specific K-Cl cotransporter KCC2 maintains low intracellular chloride levels, which are crucial for fast GABAergic and glycinergic neurotransmission. KCC2 also plays a pivotal role in the development of excitatory glutamatergic neurotransmission by promoting dendritic spine maturation. The cytoplasmic C-terminal domain (KCC2-CTD) plays a critical regulatory role in the molecular mechanisms controlling the cotransporter activity through dimerization, phosphorylation, and protein interaction.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
January 2025
Department of Anatomy, College of Health Sciences, University of Ilorin, Ilorin, 240003, Nigeria.
Background: Glia mediated neuroinflammation and degeneration of inhibitory GABAergic interneurons are some of the hall marks of pyrethroid neurotoxicity. Here we investigated the sex specific responses of inflammatory cytokines, microglia, astrocyte and parvalbumin positive inhibitory GABAergic interneurons to λ-cyhalothrin (LCT) exposures in rats.
Methods: Equal numbers of male and female rats were given oral corn oil, 2 mg/kg.
ACS Chem Neurosci
January 2025
Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD Maastricht, The Netherlands.
As the main inhibitory neurotransmission system, the GABAergic system poses an interesting yet underutilized target for molecular brain imaging. While PET imaging of postsynaptic GABAergic neurons has been accomplished using radiolabeled benzodiazepines targeting the GABA receptor, the development of presynaptic radioligands targeting GABA transporter 1 (GAT1) has been unsuccessful thus far. Therefore, we developed a novel GAT1-addressing radioligand and investigated its applicability as a PET tracer in rodents.
View Article and Find Full Text PDFJ Neurochem
January 2025
School of Life Science, Nanchang University, Nanchang, China.
Activation of the brain-penetrant beta3-adrenergic receptor (Adrb3) is implicated in the treatment of depressive disorders. Enhancing GABAergic inputs from interneurons onto pyramidal cells of prefrontal cortex (PFC) represents a strategy for antidepressant therapies. Here, we probed the effects of the activation of Adrb3 on GABAergic transmission onto pyramidal neurons in the PFC using in vitro electrophysiology.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary.
Background: N-methyl-D-aspartate type glutamate receptors (NMDARs) are fundamental to neuronal physiology and pathophysiology. The prefrontal cortex (PFC), a key region for cognitive function, is heavily implicated in neuropsychiatric disorders, positioning the modulation of its glutamatergic neurotransmission as a promising therapeutic target. Our recently published findings indicate that AT receptor activation enhances NMDAR activity in layer V pyramidal neurons of the rat PFC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!