Prostate cancer presents a major health issue, with its progression influenced by intricate molecular factors. Notably, the interplay between miRNAs and changes in transcriptomic patterns is not fully understood. Our study seeks to bridge this knowledge gap, employing computational techniques to explore how miRNAs and transcriptomic alterations jointly regulate the development of prostate cancer. The study involved retrieving miRNA expression data from the GEO database specific to prostate cancer. Identification of DEMs was conducted using the 'limma' package in R. Integration of these DEMs with mRNA interactions was done using the MiRTarBase database. Finally, a network depicting miRNA-mRNA interactions was constructed using Cytoscape software to analyze the regulatory network of prostate cancer. The study pinpointed seven pivotal differentially expressed microRNAs (DEmiRNAs) in prostate cancer: hsa-miR-185-5p, hsa-miR-153-3p, hsa-miR-198, hsa-miR-182-5p, hsa-miR-223-3p, hsa-miR-372-3p, and hsa-miR-188-5p. These miRNAs influence key genes, including FOXO3, NFAT3, PTEN, RHOA, VEGFA, SMAD7, and CDK2, playing significant roles in both tumor suppression and oncogenesis. The analysis revealed a complex network of miRNA-mRNA interactions, comprising 1849 nodes and 3604 edges. Functional Enrichment Analysis through ClueGO highlighted 74 GO terms associated with these mRNA targets. This analysis uncovered their substantial impact on critical biological processes and molecular functions, such as cyclin-dependent protein kinase activity, mitotic DNA damage checkpoint signalling, stress-activated MAPK cascade, regulation of extrinsic apoptotic signalling pathway, and positive regulation of cell adhesion. Our analysis of miRNAs and DEGs genes revealed an intriguing mix of established and potentially novel regulators in prostate cancer development. These findings both reinforce our current understanding of prostate cancer's molecular landscape and point to unexplored pathways that could lead to novel therapeutic strategies. By mapping these regulatory relationships, our work contributes to the growing knowledge base needed for developing more targeted and effective treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-025-85502-4DOI Listing

Publication Analysis

Top Keywords

prostate cancer
28
differentially expressed
8
mirnas influence
8
prostate
8
cancer study
8
mirna-mrna interactions
8
cancer
7
analysis
5
mirnas
5
comprehensive computational
4

Similar Publications

Background And Objective: PARP inhibitor (PARPi) treatment is an effective option for patients with metastatic castration-resistant prostate cancer (mCRPC). There are few data on the cardiovascular and thromboembolic safety of these agents in mCRPC, as cardiovascular and thromboembolic adverse events (AEs) are uncommon. Our aim was to analyze the incidence and risk of major adverse cardiovascular events (MACEs), thromboembolic events, and hypertension with PARPi therapy in mCRPC.

View Article and Find Full Text PDF

Background And Objective: MicroRNAs (miRNAs) are implicated in cancer by exerting roles in tumor growth, metastasis, and even drug resistance. The general trends of miRNA research in diverse cancers are not fully understood. In this work, miRNA-related research in colorectal cancer, prostate cancer, leukemia, and brain tumors was analyzed in search of key research trends with clinical potential.

View Article and Find Full Text PDF

Gut microbiota, metabolites, and cytokines in relation to the risk of prostate cancer in the Asian population.

Front Oncol

January 2025

Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.

Purpose: Studies have shown that gut microbiota is involved in the tumorigenesis and development of prostate cancer. We aimed to perform a comprehensive analysis of causal associations of gut microbiota, metabolites, and cytokines with prostate cancer in the Asian population.

Patients And Methods: Genome-wide association study (GWAS) summary datasets were collected from the public databases.

View Article and Find Full Text PDF

Purpose: Prostate-specific membrane antigen (PSMA) Positron emission tomography/magnetic resonance imaging (PET/MRI) surpasses conventional MRI (cMRI) in prostate cancer (PCa) evaluation. Our objective is to evaluate correlation of quantitative parameters in PCa using Fluorine-18 (F-18) PSMA-1007 PET/MRI and their potential for predicting metastases.

Methods: This retrospective study included 51 PCa patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!