The present study investigated the role of the neurotensin/NTS in the modulation of the lipopolysaccharide/LPS induced dysfunction of the sympatho-adrenal-medullary system/SAM using both the NTS receptor 1/NTSR agonist PD149163/PD and antagonist SR48692 /SR. Forty eight mice were maintained in eight groups; Group I/control, Groups II, III, IV, and VII received LPS for 5 days further Group III/IV/VII received PD low dose/PD, PD high dose /PD and SR for 28 days respectively. Group V/VI received similar only PD and PD dose respectively whereas Group VIII was exposed to only SR for 28 days. Adrenal tissues histopathology examined through hematoxylin-eosin staining. The plasma levels of pro-inflammatory mediators (NF-kβ, TNF-α, IL-6), IL-10, corticosterone/CORT, nor-epinephrine/NE and NTS were assessed through ELISA. Biochemical detection was adopted to check the level of oxidative stress, assessed by measuring the thiobarbituric acid reactive substance/TBARS, superoxide dismutase/SOD and catalase/CAT in adrenal tissue to determine the therapeutic effect of NTS receptor 1 analogs. Compared with LPS group, PD ameliorated the adrenal medulla histopathology by significantly decreasing pro-inflammatory mediators, CORT and NE as well as enhancing IL-10, normalizing NTS level via down-regulating NF-κβ level. PD inhibited the oxidative stress in SAM system of adrenal by reducing TBARS, while enhancing SOD and CAT activity via regulating the CORT and NE levels. Conversely, SR administration could not normalize the deleterious effect caused by the LPS due to up-regulation of NF-κβ level. Therefore, PD ameliorates the inflammation and oxidative stress of SAM system by inhibiting NF-kβ/NE signaling pathway. Thus, PD could be used as a biological tool in SAM dysfunction for therapeutic evaluation of chronic inflammatory diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12013-025-01679-5DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
nts receptor
8
days group
8
pro-inflammatory mediators
8
nf-κβ level
8
stress sam
8
sam system
8
group
5
neurotensin type
4
type receptor
4

Similar Publications

Growth hormone-releasing hormone signaling and manifestations within the cardiovascular system.

Rev Endocr Metab Disord

January 2025

Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA.

Growth hormone (GH)-releasing hormone (GHRH), a hypothalamic peptide initially characterized for its role in GH regulation, has gained increasing attention due to its GH-independent action on peripheral physiology, including that of the cardiovascular system. While its effects on the peripheral vasculature are still under investigation, GHRH and synthetic agonists have exhibited remarkable receptor-mediated cardioprotective properties in preclinical models. GHRH and its analogs enhance myocardial function by improving contractility, reducing oxidative stress, inflammation, and offsetting pathological remodeling.

View Article and Find Full Text PDF

Objectives: Copaiba essential oil (CEO) is obtained through the distillation of copaiba balsam and has been used in the traditional medicine to treat inflammatory conditions. However, the highly lipophilic nature of CEO restricts its pharmaceutical use. This study evaluated the effect of CEO, carried in a self-nanoemulsifying drug delivery system (SNEDDS), on articular and systemic inflammation and liver changes in Holtzman rats with Freund's adjuvant-induced arthritis.

View Article and Find Full Text PDF

Effects of engineered nanomaterials on the cardiovascular system.

J Occup Health

January 2025

Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke 329-0498Japan.

With the explosive development of nanotechnology, engineered nanomaterials are currently being used in various industries, including food and medicine. Concern about the health effects of nanomaterials has been raised, and available research indicates that the relative surface area of nanomaterials seems to correlate with the severity of their toxicity. With regard to engineered nanomaterials, the scope of their acute and chronic toxicities and their mechanisms are not fully understood.

View Article and Find Full Text PDF

Puerarin Attenuates Podocyte Damage in Mice With Diabetic Kidney Disease by Modulating the AMPK/Nrf2 Pathway.

Int J Endocrinol

January 2025

Nephrology Department, Jiangxi Provincial Key Research Laboratory of Traditional Chinese Medicine, Key Research Laboratory of Chronic Renal Failure, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, China.

This study aimed to investigate the potential mechanisms of puerarin in alleviating diabetic nephropathy (DKD) in mice. The DKD model was induced by multiple low-dose injections of streptozotocin (STZ) and a high-sugar and high-fat diet in male C57BL/6J mice. After confirming the onset of DKD, mice were given irbesartan, distilled water, or different concentrations of puerarin (40 and 80 mg/kg/d) by gavage for 8 weeks.

View Article and Find Full Text PDF

Growing evidence indicates that type 2 diabetes (T2D) is associated with an increased risk of developing Parkinson's disease (PD) through shared disease mechanisms. Studies show that insulin resistance, which is the driving pathophysiological mechanism of T2D plays a major role in neurodegeneration by impairing neuronal functionality, metabolism and survival. To investigate insulin resistance caused pathological changes in the human midbrain, which could predispose a healthy midbrain to PD development, we exposed iPSC-derived human midbrain organoids from healthy individuals to either high insulin concentration, promoting insulin resistance, or to more physiological insulin concentration restoring insulin signalling function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!