Background: To define optimal parameters for the evaluation of vessel visibility in intracranial stents (ICS) and flow diverters (FD) using photon-counting detector computed tomography angiography (PCD-CTA) with spectral reconstructions.

Methods: We retrospectively analyzed consecutive patients with implanted ICS or FD, who received a PCD-CTA between April 2023 and March 2024. Polyenergetic, virtual monoenergetic, pure lumen, and iodine reconstructions with different keV levels (40, 60, and 80) and reconstruction kernels (body vascular [Bv]48, Bv56, Bv64, Bv72, and Bv76) were evaluated by two radiologists with regions of interests and Likert scales. Reconstructions were compared in descriptive analysis.

Results: In total, twelve patients with nine FDs and six ICSs were analyzed. In terms of quantitative image quality, sharper kernels as Bv64 and Bv72 yielded increased image noise and decreased signal-to-noise and contrast-to-noise ratios compared to the smoothest kernel Bv48 (p = 0.001). Among the different keV levels and kernels, readers selected the 40 keV level (p = 0.001) and sharper kernels (in the majority of cases Bv72) as the best to visualize the in-stent vessel lumen. Assessing the different spectral reconstructions virtual monoenergetic and iodine reconstructions proved to be best to evaluate in-stent vessel lumen (p = 0.001).

Conclusion: PCD-CTA and spectral reconstructions with sharper reconstruction kernels and a low keV level of 40 seem to be beneficial to achieve optimal image quality for the evaluation of ICS and FD. Iodine and virtual monoenergetic reconstructions were superior to pure lumen and polyenergetic reconstructions to evaluate in-stent vessel lumen.

Relevance Statement: PCD-CTA offers the opportunity to reduce the need for invasive angiography serving as follow-up examination after intracranial stent (ICS) or flow diverter (FD) implantation.

Key Points: Neuroimaging of intracranial vessels with implanted stents and flow diverters is limited by artifacts. Twelve patients with nine flow diverters and six intracranial stents underwent photon-counting detector computed tomography angiography (PCD-CTA). In-stent vessel lumen visibility improved using sharp reconstruction kernels and a low keV level. Virtual monoenergetic and iodine reconstructions were best to evaluate in-stent vessel lumen.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s41747-025-00550-9DOI Listing

Publication Analysis

Top Keywords

in-stent vessel
20
flow diverters
16
virtual monoenergetic
16
vessel lumen
16
photon-counting detector
12
intracranial stents
12
spectral reconstructions
12
iodine reconstructions
12
reconstruction kernels
12
evaluate in-stent
12

Similar Publications

Background: He's team have recently developed a new Coronary Artery Tree description and Lesion EvaluaTion (CatLet) angiographic scoring system, which is capable of accounting for the variability in coronary anatomy, and risk-stratifying patients with coronary artery disease. Preliminary studies have demonstrated its superiority over the the Synergy between percutaneous coronary intervention with Taxus and Cardiac Surgery (SYNTAX) score with respect to outcome predictions for acute myocardial infarction (AMI) patients. However, there are fewer studies on the prognostic in chronic coronary artery disease(CAD).

View Article and Find Full Text PDF

Background: To define optimal parameters for the evaluation of vessel visibility in intracranial stents (ICS) and flow diverters (FD) using photon-counting detector computed tomography angiography (PCD-CTA) with spectral reconstructions.

Methods: We retrospectively analyzed consecutive patients with implanted ICS or FD, who received a PCD-CTA between April 2023 and March 2024. Polyenergetic, virtual monoenergetic, pure lumen, and iodine reconstructions with different keV levels (40, 60, and 80) and reconstruction kernels (body vascular [Bv]48, Bv56, Bv64, Bv72, and Bv76) were evaluated by two radiologists with regions of interests and Likert scales.

View Article and Find Full Text PDF

CCN5 suppresses injury-induced vascular restenosis by inhibiting smooth muscle cell proliferation and facilitating endothelial repair via thymosin β4 and Cd9 pathway.

Eur Heart J

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.

Background And Aims: Members of the CCN matricellular protein family are crucial in various biological processes. This study aimed to characterize vascular cell-specific effects of CCN5 on neointimal formation and its role in preventing in-stent restenosis (ISR) after percutaneous coronary intervention (PCI).

Methods: Stent-implanted porcine coronary artery RNA-seq and mouse injury-induced femoral artery neointima single-cell RNA sequencing were performed.

View Article and Find Full Text PDF

Background: The prevalence of coronary chronic total occlusion (CTO) in coronary angiography (CAG) has risen with ageing populations, along with the expansion of CTO percutaneous coronary interventions (CTO-PCI). However, CTO-PCI encounters challenges such as undersized stents, dissection risks, and limited access to intravascular imaging (IVI), particularly in regions with limited health budgets. This study introduces the 'GIVE IT TIME TO SOBER UP - GITSU strategy', a two-session CTO-PCI approach where Thrombolysis in Myocardial Infarction (TIMI-3) antegrade flow is achieved without stent placement in the first session.

View Article and Find Full Text PDF

Background And Aims: When dealing with severely calcified lesions in endovascular therapy (EVT) for lower extremity artery disease (LEAD), navigating through severely calcified chronic total occlusion (CTO) using hard-tip guidewires can be challenging. To address this issue, we employed a novel highly intensive penetration (HIP) technique. This technique involves modifying the tail of a 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!