Cytotoxic T cell immune responses against cancer crucially depend on the ability of a subtype of professional antigen-presenting cells termed conventional type 1 dendritic cells (cDC1s) to cross-present antigens. Cross-presentation comprises redirection of exogenous antigens taken from other cells to the major histocompatibility complex class I antigen-presenting machinery. In addition, once activated and having sensed viral moieties or T helper cell cooperation via CD40-CD40L interactions, cDC1s provide key co-stimulatory ligands and cytokines to mount and sustain CD8 T cell immune responses. This regulated process of cognate T cell activation is termed cross-priming. In cancer mouse models, CD8 T cell cross-priming by cDC1s is crucial for the efficacy of most, if not all, immunotherapy strategies. In patients with cancer, the presence and abundance of cDC1s in the tumour microenvironment is markedly associated with the level of T cell infiltration and responsiveness to immune checkpoint inhibitors. Therapeutic strategies to increase the numbers of cDC1s using FMS-like tyrosine kinase 3 ligand (FLT3L) and/or their activation status show evidence of efficacy in cancer mouse models and are currently being tested in initial clinical trials with promising results so far.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41568-024-00785-5DOI Listing

Publication Analysis

Top Keywords

cross-priming cancer
8
cell immune
8
immune responses
8
cd8 cell
8
cancer mouse
8
mouse models
8
cell
6
cdc1s
5
cancer immunology
4
immunology immunotherapy
4

Similar Publications

Cross-priming in cancer immunology and immunotherapy.

Nat Rev Cancer

January 2025

Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.

Cytotoxic T cell immune responses against cancer crucially depend on the ability of a subtype of professional antigen-presenting cells termed conventional type 1 dendritic cells (cDC1s) to cross-present antigens. Cross-presentation comprises redirection of exogenous antigens taken from other cells to the major histocompatibility complex class I antigen-presenting machinery. In addition, once activated and having sensed viral moieties or T helper cell cooperation via CD40-CD40L interactions, cDC1s provide key co-stimulatory ligands and cytokines to mount and sustain CD8 T cell immune responses.

View Article and Find Full Text PDF

Suppressor of cytokine signaling (SOCS) 1 is a key negative regulator of interferon (IFN), interleukin (IL)12, and IL-2 family cytokine signaling through inhibition of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. To investigate the temporal induction of SOCS1 in response to cytokine in live cells and its selective regulation of signaling pathways, we generated a mouse expressing a Halo-tag-SOCS1 fusion protein (Halo-SOCS1) under control of the endogenous promoter. Homozygous Halo-SOCS1 mice () were viable with minor T cell abnormalities, most likely due to enhanced Halo-SOCS1 expression in thymocytes compared with the untagged protein.

View Article and Find Full Text PDF

Design of a humanized CD40 agonist antibody with specific properties using AlphaFold2 and development of an anti-PD-L1/CD40 bispecific antibody for cancer immunotherapy.

Transl Oncol

February 2025

School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China. Electronic address:

Bispecific antibodies (BsAbs) represent a promising strategy for cancer immunotherapy. Challenges in immunotherapy include inefficient early events in the immune response cycle, such as antigen presentation and T cell priming. Background stimulation of CD40 with agonistic antibodies is a promising strategy to enhance the therapeutic efficacy of immune checkpoint inhibitors (ICIs).

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma (GBM) is the deadliest brain tumor in adults, and current therapies are largely ineffective, which drives the need for new treatment strategies based on the tumor's metabolic needs, specifically glucose and glutamine.
  • A ketogenic metabolic therapy (KMT) approach targets these metabolic pathways by combining dietary changes with specific drugs to limit glycolysis and glutaminolysis, while promoting the use of non-fermentable fuels like ketones and fatty acids.
  • The glucose-ketone index (GKI) serves as a biomarker to monitor treatment effectiveness, aiming to create a more hostile environment for tumor growth and improve outcomes in GBM as well as potentially other cancer types reliant on similar metabolic pathways.
View Article and Find Full Text PDF

The tumour microenvironment is programmed by cancer cells and substantially influences anti-tumour immune responses. Within the tumour microenvironment, CD8 T cells undergo full effector differentiation and acquire cytotoxic anti-tumour functions in specialized niches. Although interactions with type 1 conventional dendritic cells have been implicated in this process, the underlying cellular players and molecular mechanisms remain incompletely understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!