In subsurface methanogenic ecosystems, the ubiquity of methylated-compound-using archaea-methylotrophic methanogens-implies that methylated compounds have an important role in the ecology and carbon cycling of such habitats. However, the origin of these chemicals remains unclear as there are no known energy metabolisms that generate methylated compounds de novo as a major product. Here we identified an energy metabolism in the subsurface-derived thermophilic anaerobe Zhaonella formicivorans that catalyses the conversion of formate to methanol, thereby producing methanol without requiring methylated compounds as an input. Cultivation experiments showed that formate-driven methanologenesis is inhibited by the accumulation of methanol. However, this limitation can be overcome through methanol consumption by a methylotrophic partner methanogen, Methermicoccus shengliensis. This symbiosis represents a fourth mode of mutualistic cross-feeding driven by thermodynamic necessity (syntrophy), previously thought to rely on transfer of hydrogen, formate or electrons. The unusual metabolism and syntrophy provide insights into the enigmatic presence of methylated compounds in subsurface methanogenic ecosystems and demonstrate how organisms survive at the thermodynamic limit through metabolic symbiosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-024-08491-w | DOI Listing |
Nanoscale Adv
January 2025
Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
Catalysis plays a vital role in green chemistry by improving process efficiency, reducing waste, and minimizing environmental impact. A biochar-modified g-CN·SOH (BCNSA) catalyst was developed using biochar derived from amla seed powder and CNSA. CNSA was synthesized the reaction of g-CN with chlorosulfonic acid.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
Chronic myeloid leukaemia (CML) is primarily treated using imatinib mesylate, a tyrosine kinase inhibitor (TKI) targeting the BCR::ABL1 oncoprotein. However, the development of drug resistance and adverse side effects necessitate the exploration of alternative therapeutic agents. This study presents the synthesis and characterization of a novel imatinib analogue, 3-chloro--(2-methyl-5-((4-(pyridin-2-yl)pyrimidin-2-yl)amino)phenyl)benzamide (PAPP1).
View Article and Find Full Text PDFSci Rep
January 2025
LCEA Laboratory, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco.
In the current investigation, the efficiency inhibition of two newly synthesized bi-pyrazole derivatives, namely 2,3-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] pyridine (Tetra-Pz-Ortho) and 1,4-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] benzene (Tetra-Pz-Para) for corrosion of carbon steel (C&S) in 1 M HCl medium was evaluated. A Comparative study of inhibitor effect of Tetra-Pz-Ortho and Tetra-Pz-Para was conducted first using weight loss method and EIS (Electrochemical Impedance Spectroscopy) and PDP (Potentiodynamic Polarisation) techniques. Tetra-Pz-Ortho and Tetra-Pz-Para had a maximum inhibition efficacy of 97.
View Article and Find Full Text PDFNature
January 2025
Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
In subsurface methanogenic ecosystems, the ubiquity of methylated-compound-using archaea-methylotrophic methanogens-implies that methylated compounds have an important role in the ecology and carbon cycling of such habitats. However, the origin of these chemicals remains unclear as there are no known energy metabolisms that generate methylated compounds de novo as a major product. Here we identified an energy metabolism in the subsurface-derived thermophilic anaerobe Zhaonella formicivorans that catalyses the conversion of formate to methanol, thereby producing methanol without requiring methylated compounds as an input.
View Article and Find Full Text PDFNat Commun
January 2025
Enamine Ltd, Winston Churchill st. 78, 02094, Kyiv, Ukraine.
A chemical reagent to access methyl sulfones has been developed. Its reaction with various bis-nucleophiles leads to the rapid formation of previously unknown heteroaromatic methyl sulfones. Analogous strategy can also be used to construct alkyl-, CHF-, CF- and even bicyclo[1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!