We identified a set of bias-corrected and downscaled Coupled Model Intercomparison Project 6 (CMIP6) models capable of accurately simulating the observed mean Indian summer monsoon rainfall, extreme rain events (EREs) and their respective interannual variability. The future changes in EREs projected by these models for four climate change scenarios-Shared Socioeconomic Pathways (SSPs), 1-2.6, 2-4.5, 3-7.0 and 5-8.5 were estimated using percentile thresholds. Under the highest emission scenario, SSP5-8.5, at the end of the century, summer monsoon season total rainfall exhibits a 1.1-fold increase, while extreme rainfall intensity demonstrates a more substantial rise of 1.3-fold. The spatial variability of seasonal total rainfall increases by 1.2-fold compared to the baseline period, with an even more pronounced 2.1-fold increase in the spatial variability of extreme rainfall (R99p). These findings underscore the significant amplification of rainfall variability and intensity under the most extreme climate scenario. The intensity and frequency of very extreme rainfall events (vEREs) were also found to increase, though with a substantial inter-model spread. Under SSP5-8.5, extreme rainfall intensity scales with temperature at 1.5 to 2 times the Clausius-Clapeyron (CC) rate. While mid-century scenarios show minimal variations in extreme rainfall intensity from the historical period, end-century projections reveal significant shifts; an increase in north India and a decrease in south India due to cloud-induced cooling effects.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-025-87949-xDOI Listing

Publication Analysis

Top Keywords

extreme rainfall
24
summer monsoon
12
rainfall intensity
12
rainfall
10
extreme
8
rainfall events
8
indian summer
8
cmip6 models
8
total rainfall
8
spatial variability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!