Colloidal quantum dots (QDs) are promising emitters for biological applications because of their excellent fluorescence, convenient surface modification, and photostability. However, the toxic cadmium composition in the state-of-the-art QDs and their inferior properties in the aqueous phase greatly restrict further use. The performance of water-soluble indium phosphide (InP) QDs lags far behind those of Cd-containing counterparts due to the lack of effective surface protection. Here, we present an efficient copassivation strategy via dual hydrophilic ligands to achieve water-soluble InP-based QDs with ideal optical properties. A record photoluminescence quantum yield of near-unity and monoexponential decay dynamics for water-soluble InP-based QDs are achieved. For the first time, we realize a single water-soluble InP-based QD with significantly suppressed blinking. Furthermore, the novel QDs exhibit superior cellular imaging capabilities and high resistance to photobleaching compared with commonly used organic dyes. The results presented here will inspire the development of environmentally friendly water-soluble QDs as a promising class of fluorescence labels for biological applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c10731 | DOI Listing |
J Am Chem Soc
January 2025
School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
Colloidal quantum dots (QDs) are promising emitters for biological applications because of their excellent fluorescence, convenient surface modification, and photostability. However, the toxic cadmium composition in the state-of-the-art QDs and their inferior properties in the aqueous phase greatly restrict further use. The performance of water-soluble indium phosphide (InP) QDs lags far behind those of Cd-containing counterparts due to the lack of effective surface protection.
View Article and Find Full Text PDFSmall
November 2024
University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, 38000, France.
Solution-processed colloidal III-V semiconductor-based quantum dots (QDs) represent promising and environmentally-friendly alternatives to Cd-based QDs in the realms of optoelectronics and biological applications. While InP-based core-shell QDs have demonstrated efficient light-emitting diode (LED) performance in the visible region, achieving deep-red emission (above 700 nm) with a narrow linewidth has proven challenging. Herein, the study presents a novel strategy for synthesizing InP/ZnSe/ZnS core-shell-shell QDs tailored for emission in the first biological transparency window.
View Article and Find Full Text PDFPhys Chem Chem Phys
July 2024
NANOTECH Centre, Ural Federal University, 620002 Ekaterinburg, Russia.
The utilization of InP-based biocompatible quantum dots (QDs) necessitates a comprehensive understanding of the structure-dependent characteristics influencing their optical behavior. The optimization of core/shell QDs for practical applications is of particular interest due to their reduced toxicity, enhanced photostability, and improved luminescence efficiency. This optimization involves analyzing thermally activated processes involving exciton and defect-related energy levels.
View Article and Find Full Text PDFNanoscale
May 2019
Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang 37673, Republic of Korea.
In this study, we designed and synthesized far-red- and near-infrared-emitting Cu-doped InP-based quantum dots (QDs), and we also demonstrated their highly specific and sensitive biological imaging ability. Cu-doped InP/ZnS (core/shell) QDs were prepared using the hot colloidal synthesis method in the organic phase. The ZnS shell passivates the surface and improves the photoluminescence (PL) intensity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!