Biocatalysis provides access to synthetically challenging molecules and commercially and pharmaceutically relevant natural product analogs while adhering to principles of green chemistry. Cytochromes P450 (P450s) are amongst the most superlative and versatile oxidative enzymes found in nature and are desired regio- and stereoselective biocatalysts, particularly for structurally complex hydrocarbon skeletons. We used 10 genome-sequenced Streptomyces strains, selected based on their preponderance of P450s, to biotransform the bioactive diterpenoid abietic acid. We isolated and structurally characterized seven oxidized abietic acid derivatives from three different strains, including four products that are new bacterial biotransformants or enzymatic products. Oxidations (hydroxylation, dehydrogenation, and aromatization) were seen on both the B and C rings of abietic acid and five products had multiple modifications. Notable conversions observed in the study was that of abietic acid to 15-hydroxy-7-oxo-8,11,13-abietatrien-18-oic acid, 7, which involves multiple hydroxylation reactions and dehydrogenation. The findings from this study will lead to identifying P450s or other enzymes that may act as general biocatalysts to modify abietanes and other labdane-type diterpenoid skeletons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jimb/kuaf003 | DOI Listing |
J Ind Microbiol Biotechnol
January 2025
Department of Chemistry, University of Florida, Gainesville, FL, USA.
Biocatalysis provides access to synthetically challenging molecules and commercially and pharmaceutically relevant natural product analogs while adhering to principles of green chemistry. Cytochromes P450 (P450s) are amongst the most superlative and versatile oxidative enzymes found in nature and are desired regio- and stereoselective biocatalysts, particularly for structurally complex hydrocarbon skeletons. We used 10 genome-sequenced Streptomyces strains, selected based on their preponderance of P450s, to biotransform the bioactive diterpenoid abietic acid.
View Article and Find Full Text PDFAnn Clin Lab Sci
November 2024
Department of Internal Medicine-Cardiovascular, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
Objective: To explore the influence of abietic acid on the autophagy and apoptosis of cardiomyocytes in rats with acute myocardial infarction (AMI).
Methods: A rat model of AMI was built by ligation of the anterior descending branch of left coronary artery, and a model of hypoxic cardiomyocyte injury was constructed by treating cardiomyocytes with hypoxia. Western blot assay was used to detect the abundance of proteins related to autophagy and apoptosis, MTT assay was used to measure the viability of cardiomyocytes, and the expression level of miR-30a-5p was detected by qRT-PCR.
Anal Sci
January 2025
Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.
"Liquid gold" has been traditionally used for over a century to decorate ceramicware, but its chemical composition has not been thoroughly investigated. One of the keys to successfully characterizing liquid gold, which is a complex mixture, is to distinguish Au-containing products from other chemicals. In this paper, we propose a separation based on the difference in collision cross section, of which chemicals with heavy atoms are relatively smaller than those without in ion mobility-mass spectrometry (IM-MS).
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Chemistry, Dong-A University, Busan 49315, Republic of Korea.
Cobalt (II, III) oxide (CoO) has recently gained attention as an alternative anode material to commercial graphite in lithium-ion batteries (LIBs) due to its superior safety and large theoretical capacity of about 890 mAh g. However, its practical application is limited by poor electrical conductivity and rapid capacity degradation because of significant volume increases and structural strain during repeated lithiation/delithiation cycles. To address these issues, this work presents a novel approach to synthesizing carbon-composited CoO microspheres (CoO@C), using abietic acid (AA) as a carbon source to increase conductivity and structural stability.
View Article and Find Full Text PDFGels
November 2024
Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!