The neuromuscular junction (NMJ) is the linchpin of nerve-evoked muscle contraction. Broadly, the function of the NMJ is to transduce nerve action potentials into muscle fiber action potentials (MFAPs). Efficient neuromuscular transmission requires both cholinergic signaling, responsible for generation of endplate potentials (EPPs), and excitation, the amplification of the EPP by postsynaptic voltage-gated sodium channels (Nav1.4) to generate the MFAP. In contrast to the cholinergic component, the signaling pathways that organize Nav1.4 and mediate muscle fiber excitability are poorly characterized. Muscle-specific kinase (MuSK), in addition to its Ig1 domain-dependent role as the main organizer of acetylcholine receptors AChRs), also binds BMPs via its Ig3 domain and shapes BMP-induced signaling and transcriptional output. Here, using mice lacking the MuSK Ig3 domain ('ΔIg3-MuSK'), we probed the role of this domain at the NMJ. NMJs formed in ΔIg3-MuSK animals with pre- and post- synaptic specializations aligned at all ages examined. However, the ΔIg3-MuSK postsynaptic apparatus was fragmented from the first weeks of life. Synaptic electrophysiology showed that spontaneous and nerve-evoked acetylcholine release, AChR density, and endplate currents were comparable at WT and ΔIg3-MuSK NMJs. However, single fiber electromyography revealed that nerve-evoked MFAPs in ΔIg3-MuSK muscle were abnormal as evidenced by jitter and blocking. Further, nerve-evoked compound muscle action potentials and muscle force production were also diminished. Finally, Nav1.4 levels were reduced at ΔIg3-MuSK NMJs, but not at the sarcolemma broadly, indicating that the observed excitability defects result from impaired synaptic localization of this ion channel. We propose that MuSK plays distinct, domain-specific roles at the NMJ: the Ig1 domain mediates agrin-LRP4 mediated AChR localization, while the Ig3 domain maintains postsynaptic Nav1.4 density, conferring the muscle excitability required to amplify cholinergic signals and trigger action potentials. The neuromuscular junction (NMJ) is required for nerve-evoked muscle contraction and movement, and its function is compromised during aging and disease. Though the mechanisms underlying neurotransmitter release and cholinergic response at this synapse have been studied extensively, the machinery necessary for nerve-evoked muscle excitation are incompletely characterized. We show that the Ig3 domain of MuSK (muscle-specific kinase) regulates NMJ structure and the localization of voltage-gated sodium channels necessary for nerve-evoked muscle fiber excitation and force production. This function of MuSK is structurally and mechanistically distinct from its role in organizing cholinergic machinery. The Ig3 domain of MuSK thus emerges as a target for selectively modulating excitability, which is defective in conditions such as congenital myasthenic syndromes and age-related muscle weakness.

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.1279-23.2025DOI Listing

Publication Analysis

Top Keywords

ig3 domain
20
nerve-evoked muscle
16
action potentials
16
neuromuscular junction
12
muscle fiber
12
muscle
11
junction nmj
8
muscle contraction
8
potentials muscle
8
voltage-gated sodium
8

Similar Publications

MuSK regulates neuromuscular junction Nav1.4 localization and excitability.

J Neurosci

January 2025

Carney Institute for Brain Science, Brown University, Providence, RI 02912

The neuromuscular junction (NMJ) is the linchpin of nerve-evoked muscle contraction. Broadly, the function of the NMJ is to transduce nerve action potentials into muscle fiber action potentials (MFAPs). Efficient neuromuscular transmission requires both cholinergic signaling, responsible for generation of endplate potentials (EPPs), and excitation, the amplification of the EPP by postsynaptic voltage-gated sodium channels (Nav1.

View Article and Find Full Text PDF

Molecular mechanism of contactin 2 homophilic interaction.

Structure

October 2024

Department of Pharmacology and Toxicology; University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA. Electronic address:

Contactin 2 (CNTN2) is a cell adhesion molecule involved in axon guidance, neuronal migration, and fasciculation. The ectodomains of CNTN1-CNTN6 are composed of six Ig domains (Ig1-Ig6) and four FN domains. Here, we show that CNTN2 forms transient homophilic interactions (K ∼200 nM).

View Article and Find Full Text PDF

Intestinal epithelia express two long myosin light-chain kinase (MLCK) splice variants, MLCK1 and MLCK2, which differ by the absence of a complete immunoglobulin (Ig)-like domain 3 within MLCK2. MLCK1 is preferentially associated with the perijunctional actomyosin ring at steady state, and this localization is enhanced by inflammatory stimuli including tumor necrosis factor (TNF). Here, we sought to identify MLCK1 domains that direct perijunctional MLCK1 localization and their relevance to disease.

View Article and Find Full Text PDF
Article Synopsis
  • Myofiber size is important for overall health and can be influenced by factors like disease and aging.
  • MuSK (muscle-specific kinase) plays a key role in the signaling process that affects muscle development, especially at neuromuscular junctions.
  • Mice studies show that the absence of the MuSK Ig3 domain leads to smaller myofibers in slow muscles, while the mechanism involving the IGF1-Akt-mTOR pathway could be targeted for muscle growth and preventing muscle loss.
View Article and Find Full Text PDF

Contactin 2 homophilic adhesion structure and conformational plasticity.

Structure

January 2024

Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands. Electronic address:

The cell-surface attached glycoprotein contactin 2 is ubiquitously expressed in the nervous system and mediates homotypic cell-cell interactions to organize cell guidance, differentiation, and adhesion. Contactin 2 consists of six Ig and four fibronectin type III domains (FnIII) of which the first four Ig domains form a horseshoe structure important for homodimerization and oligomerization. Here we report the crystal structure of the six-domain contactin 2 and show that the Ig5-Ig6 combination is oriented away from the horseshoe with flexion in interdomain connections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!