Hearing impairment (HI) disrupts social interaction by hindering the ability to follow conversations in noisy environments. While hearing aids (HAs) with noise reduction (NR) partially address this, the "cocktailparty problem" persists, where individuals struggle to attend to specific voices amidst background noise. This study investigated how NR and an advanced signal processing method for compensating for nonlinearities in EEG signals can improve neural speech processing in HI listeners. Participants wore hearing aids with NR, either activated or deactivated, while focusing on target speech amidst competing masker speech and background noise. Analysis focused on temporal response functions to assess neural tracking of relevant target and masker speech. Results revealed enhanced neural responses (N1 and P2) to target speech, particularly in frontal and central scalp regions, when NR was activated. Additionally, a novel method compensated for nonlinearities in EEG data, leading to improved signal-to-noise ratio (SNR) and potentially revealing more precise neural tracking of relevant speech. This effect was most prominent in the left-frontal scalp region. Importantly, NR activation significantly improved the effectiveness of this method, leading to stronger responses and reduced variance in EEG data and potentially revealing more precise neural tracking of relevant speech. This study provides valuable insights into the neural mechanisms underlying NR benefits and introduces a promising EEG analysis approach sensitive to NR effects, paving the way for potential improvements in HAs. Understanding how hearing aids (HAs) with noise reduction (NR) improve selective auditory attention in noisy environments is crucial for future advancements. This study investigated the neural effects of NR in hearing-impaired listeners using EEG. We observed significantly enhanced neural responses (N1 and P2 peaks) to target speech with NR activated, suggesting improved speech tracking in frontal and central scalp regions. The advanced signal processing method also compensated for nonlinearities in EEG data, improving the signal-to-noise ratio (SNR) and revealing more precise neural tracking, particularly in the left-frontal scalp region. This study sheds light on the neural mechanisms behind NR benefits and introduces a promising EEG analysis method sensitive to NR effects, paving the way for optimizing future HAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1523/ENEURO.0275-24.2025 | DOI Listing |
Front Robot AI
January 2025
Life- and Neurosciences, Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany.
Biological vision systems simultaneously learn to efficiently encode their visual inputs and to control the movements of their eyes based on the visual input they sample. This autonomous joint learning of visual representations and actions has previously been modeled in the Active Efficient Coding (AEC) framework and implemented using traditional frame-based cameras. However, modern event-based cameras are inspired by the retina and offer advantages in terms of acquisition rate, dynamic range, and power consumption.
View Article and Find Full Text PDFJ Neurosci
January 2025
The Department of Psychology and The Department of Cognitive and Brain Sciences, The Hebrew University of Jerusalem.
Predictive updating of an object's spatial coordinates from pre-saccade to post-saccade contributes to stable visual perception. Whether object features are predictively remapped remains contested. We set out to characterise the spatiotemporal dynamics of feature processing during stable fixation and active vision.
View Article and Find Full Text PDFHearing impairment (HI) disrupts social interaction by hindering the ability to follow conversations in noisy environments. While hearing aids (HAs) with noise reduction (NR) partially address this, the "cocktailparty problem" persists, where individuals struggle to attend to specific voices amidst background noise. This study investigated how NR and an advanced signal processing method for compensating for nonlinearities in EEG signals can improve neural speech processing in HI listeners.
View Article and Find Full Text PDFCell Rep Med
January 2025
DiMePRe-J-Department of Precision and Rigenerative Medicine-Jonic Area, University of Bari "Aldo Moro", Bari, Italy.
The diagnosis of autism is currently based on the developmental history, direct observation of behavior, and reported symptoms, supplemented by rating scales/interviews/structured observational evaluations-which is influenced by the clinician's knowledge and experience-with no established diagnostic biomarkers. A growing body of research has been conducted over the past decades to improve diagnostic accuracy. Here, we provide an overview of the current diagnostic assessment process as well as of recent and ongoing developments to support diagnosis in terms of genetic evaluation, telemedicine, digital technologies, use of machine learning/artificial intelligence, and research on candidate diagnostic biomarkers.
View Article and Find Full Text PDFMed Phys
January 2025
Deparment of Radiation Oncology, Duke University, Durham, North Carolina, USA.
Background: Stereotactic radiosurgery (SRS) is widely used for managing brain metastases (BMs), but an adverse effect, radionecrosis, complicates post-SRS management. Differentiating radionecrosis from tumor recurrence non-invasively remains a major clinical challenge, as conventional imaging techniques often necessitate surgical biopsy for accurate diagnosis. Machine learning and deep learning models have shown potential in distinguishing radionecrosis from tumor recurrence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!