Production and use of lignocellulosic wood vinegar and tar as organic pesticides to fight bacterial canker disease.

Int J Biol Macromol

Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada. Electronic address:

Published: January 2025

This study investigated the production and application of lignocellulosic wood vinegar and tar as organic pesticides to combat bacterial canker disease in trees, caused by pathogenic bacteria. Lignocellulosic wood vinegar and tar were produced from various lignocellulosic wastes through pyrolysis at different temperatures, with sawdust at 300 °C, 350 °C, and 400 °C yielding the highest quantity and quality of vinegar. Chemical analysis revealed that the lignocellulosic vinegar contained significant concentrations of acetic acid, methanol, and phenolic compounds, all known for their strong antimicrobial properties. In vitro tests demonstrated that lignocellulosic vinegar exhibited dose-dependent antibacterial activity against the bacterial canker pathogen. Furthermore, greenhouse and field trials confirmed that lignocellulosic vinegar effectively reduced disease severity in infected trees, highlighting its potential as a sustainable alternative to chemical pesticides. This research addresses a significant gap in the scientific literature by exploring the use of lignocellulosic wood vinegar and tar for wood preservation and plant disease control. The findings suggest that lignocellulosic vinegar, particularly when derived from sawdust, can be a viable organic pesticide for managing bacterial canker disease, contributing to the development of environmentally friendly pest management strategies in agriculture and forestry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.140373DOI Listing

Publication Analysis

Top Keywords

lignocellulosic wood
16
wood vinegar
16
vinegar tar
16
bacterial canker
16
lignocellulosic vinegar
16
canker disease
12
vinegar
9
tar organic
8
organic pesticides
8
lignocellulosic
8

Similar Publications

Background: Fungal pretreatment for partial separation of lignocellulosic components may reduce lignocellulose recalcitrance during the production of biofuels and biochemicals. Quantitative and qualitative modification of plant lignin through genetic engineering or traditional breeding may also reduce the recalcitrance. This study was conducted to examine the effects of combining these two approaches using three white rot fungi and mulberry wood with an altered lignin structure.

View Article and Find Full Text PDF

Production and use of lignocellulosic wood vinegar and tar as organic pesticides to fight bacterial canker disease.

Int J Biol Macromol

January 2025

Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada. Electronic address:

This study investigated the production and application of lignocellulosic wood vinegar and tar as organic pesticides to combat bacterial canker disease in trees, caused by pathogenic bacteria. Lignocellulosic wood vinegar and tar were produced from various lignocellulosic wastes through pyrolysis at different temperatures, with sawdust at 300 °C, 350 °C, and 400 °C yielding the highest quantity and quality of vinegar. Chemical analysis revealed that the lignocellulosic vinegar contained significant concentrations of acetic acid, methanol, and phenolic compounds, all known for their strong antimicrobial properties.

View Article and Find Full Text PDF

Lignocellulose nanofiber-enhanced hydrogel electrolytes with lignin-Al in metal-based neutral deep eutectic solvent for flexible supercapacitors.

J Colloid Interface Sci

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037 China. Electronic address:

The mechanical flexibility and high conductivity of hydrogel electrolytes are crucial for their application in supercapacitors. In this study, we developed hydrogel electrolyte based on lignocellulose nanofibers (LCNFs) through nanofibrillation and self-catalytic gelation in a glycerinum/choline chloride/aluminum chloride hexahydrate (Gly/ChCl/AlCl·6HO) metal-based neutral deep eutectic solvent (DES) system. The lignin-Al self-catalytic mechanism offered an eco-friendly and sustainable method for synthesizing hydrogel electrolytes, while enhancing their ionic conductivity.

View Article and Find Full Text PDF

An Extensive Study of an Eco-Friendly Fireproofing Process of Lignocellulosic × Particles and Their Application in Flame-Retardant Panels.

Polymers (Basel)

January 2025

Laboratory of Physical Chemistry of Materials (LCPM), Campus Fanar, Faculty of Sciences II, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon.

Increasing the flame retardancy of lignocellulosic materials such as × can effectively enable their wide use. This study examines the fireproofing process of Miscanthus particles using an eco-friendly process by grafting phytic acid and urea in aqueous solution. Miscanthus particles underwent a steam explosion step before being grafted.

View Article and Find Full Text PDF

With rising demand for wood products and reduced wood harvesting due to the European Green Deal, alternative lignocellulosic materials for insulation are necessary. In this work, we manufactured reference particleboard from industrial particles and fifteen different board variants from alternative lignocellulosic plants material, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!