The possible involvement of mTOR/p70S6K signaling in mediating Fibrillin-1 expression during the transition from acute kidney injury (AKI) to chronic kidney disease (CKD) after cardiac arrest and cardiopulmonary resuscitation (CA/CPR). A CA/CPR AKI model was established using male C57BL/6 mice aged 8-12 weeks. The expression of Fibrillin-1 and activation of the mTOR/p70S6K signaling pathway in kidney tissues were assessed at different time points. Rapamycin, administered intraperitoneally, inhibited the mTOR/p70S6K signaling pathway in CA/CPR AKI mice. Tissue immunofluorescence and immunohistochemistry were used to detect the injury, fibrosis, and inflammatory cell infiltration in renal tissues. The expression level of Fibrillin-1 and components of the mTOR/p70S6K signaling pathway, while ELISA quantified levels of inflammatory factors in renal tissues. Results showed that Fibrillin-1 expression progressively increased alongside enhanced mTOR/p70S6K signaling in the renal tissues of CA/CPR AKI mice. Inhibition of mTOR/p70S6K signaling by rapamycin reduced Fibrillin-1 expression, collagen deposition, and α-SMA levels, alleviating renal injury and decreasing macrophage and T cell infiltration, as well as inflammatory factor production. Conversely, combining rapamycin with Fibrillin-1 overexpression exacerbated renal injury and increased inflammatory factor production. Activation of the mTOR/p70S6K pathway upregulates Fibrillin-1 expression, potentially facilitating the progression from AKI to CKD in CA/CPR mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2025.111624 | DOI Listing |
Cell Signal
January 2025
School of Basic Medicine, Jiamusi University, Jiamusi 154007, PR China. Electronic address:
The possible involvement of mTOR/p70S6K signaling in mediating Fibrillin-1 expression during the transition from acute kidney injury (AKI) to chronic kidney disease (CKD) after cardiac arrest and cardiopulmonary resuscitation (CA/CPR). A CA/CPR AKI model was established using male C57BL/6 mice aged 8-12 weeks. The expression of Fibrillin-1 and activation of the mTOR/p70S6K signaling pathway in kidney tissues were assessed at different time points.
View Article and Find Full Text PDFAppl Physiol Nutr Metab
January 2025
Brock University, Department of Health Sciences, St Catharines, Ontario, Canada.
The worldwide epidemic of obesity has drastically worsened with the increase in more sedentary lifestyles and increased consumption of fatty foods. Increased blood free fatty acids (FFAs), often observed in obesity, leads to impaired insulin action, and promotes the development of insulin resistance and Type 2 diabetes mellitus (T2DM). JNK, IKK-NF-κB, and STAT3 are known to be involved in skeletal muscle insulin resistance.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China.
Bisphenol A (BPA), an environmental endocrine disrupting chemical, is one of the most widely used chemicals in the world and is widely distributed in the external environment, specifically in food, water, dust, and soil. BPA exposure is associated with abnormal cognitive behaviors. However, the underlying mechanism remains unclear.
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
Bitter acids (BA) are main component of Humulus lupulus L. (hops). They are known for beer brewing and have various biological and pharmacological properties, especially the bone-protective effect confirmed by our previous in vivo study.
View Article and Find Full Text PDFBiochem Pharmacol
December 2024
Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China. Electronic address:
As an important pathological process, annulus fibrosus (AF) degeneration contributes greatly to intervertebral disc degeneration (IVDD). Moreover, extracellular matrix (ECM) degradation and AF cell (AFC) autophagy are of utmost importance. The involvement of cannabinoid receptor type 2 (CB2) in the pathological mechanisms underlying different diseases has been demonstrated dueto its capacity toregulateautophagy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!