The diagnosis of autism is currently based on the developmental history, direct observation of behavior, and reported symptoms, supplemented by rating scales/interviews/structured observational evaluations-which is influenced by the clinician's knowledge and experience-with no established diagnostic biomarkers. A growing body of research has been conducted over the past decades to improve diagnostic accuracy. Here, we provide an overview of the current diagnostic assessment process as well as of recent and ongoing developments to support diagnosis in terms of genetic evaluation, telemedicine, digital technologies, use of machine learning/artificial intelligence, and research on candidate diagnostic biomarkers. Genetic testing can meaningfully contribute to the assessment process, but caution is required when interpreting negative results, and more work is needed to strengthen the transferability of genetic information into clinical practice. Digital diagnostic and machine-learning-based analyses are emerging as promising approaches, but larger and more robust studies are needed. To date, there are no available diagnostic biomarkers. Moving forward, international collaborations may help develop multimodal datasets to identify biomarkers, ensure reproducibility, and support clinical translation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xcrm.2024.101916 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!