Traffic signals, while reducing conflicts within intersections, often lead to stop-and-go behaviors in approaching vehicles, negatively impacting traffic flow in terms of safety, efficiency, and fuel consumption. Aimed at minimizing the traffic oscillations caused by traffic signals through Connected and Autonomous Vehicles (CAVs) and meeting real-time operational needs, this paper proposes a Risk-Based Adaptive Cruise Control (RACC). RACC designs the constraints of approaching a signalized intersection as expected risks, enabling compliance with all constraints while being adaptable to basic road scenarios. Theoretical analysis indicates that RACC, under specific parameter conditions, achieves string stability and overdamped characteristics while maintaining high throughput efficiency. Simulations confirm RACC's sensitivity to risks, allowing it to timely adjust to return to a stable state, thus ensuring platoon safety under high throughput conditions. At signalized intersections, RACC enables CAVs to cross stop lines with smooth trajectories, significantly reducing risk, delays, and fuel consumption for all downstream vehicles. Further simulations demonstrate that RACC significantly reduces average travel time delay and fuel consumption across various traffic volumes and Market Penetration Rates (MPRs), with reductions of up to 87.1% in delays and 54.8% in fuel consumption, showcasing substantial computational efficiency improvements over benchmarks. Furthermore, extending this study to scenarios with higher traffic conflicts, such as multi-lane roads or intersections, while considering the impact of lane-changing behavior, is a promising direction for future research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aap.2025.107939 | DOI Listing |
Sci Rep
January 2025
Department of Computer Science, American International University-Bangladesh (AIUB), Dhaka, 1229, Bangladesh.
The transportation industry contributes significantly to climate change through carbon dioxide ( ) emissions, intensifying global warming and leading to more frequent and severe weather phenomena such as flooding, drought, heat waves, glacier melting, and rising sea levels. This study proposes a comprehensive approach for predicting emissions from vehicles using deep learning techniques enhanced by eXplainable Artificial Intelligence (XAI) methods. Utilizing a dataset from the Canadian government's official open data portal, we explored the impact of various vehicle attributes on emissions.
View Article and Find Full Text PDFAccid Anal Prev
January 2025
School of Transportation, Southeast University, Nanjing, Jiangsu Province 211189, PR China; Institute on Internet of Mobility, Southeast University and University of Wisconsin-Madison, Southeast University, Nanjing, Jiangsu Province 211189, PR China.
Traffic signals, while reducing conflicts within intersections, often lead to stop-and-go behaviors in approaching vehicles, negatively impacting traffic flow in terms of safety, efficiency, and fuel consumption. Aimed at minimizing the traffic oscillations caused by traffic signals through Connected and Autonomous Vehicles (CAVs) and meeting real-time operational needs, this paper proposes a Risk-Based Adaptive Cruise Control (RACC). RACC designs the constraints of approaching a signalized intersection as expected risks, enabling compliance with all constraints while being adaptable to basic road scenarios.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing, 100081, China; School of Management, Beijing Institute of Technology, Beijing, 100081, China.
This study estimates the impact of reducing household solid fuel dependence on the infant mortality rate (IMR) in developing countries, where traditional solid fuels such as firewood and coal are widely used. Utilizing panel data from 76 developing countries over the period 1990 to 2020, our findings indicate that IMR drops substantially as household reliance on solid fuels decreases. A 1% reduction in per capita solid fuel consumption is linked to an average 0.
View Article and Find Full Text PDFSci Rep
January 2025
PV Unit, Solar and Space Research Department, National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Cairo, Egypt.
The inadequate thermal insulation of the building envelope contributes significantly to the high power consumption of air conditioners in houses. A crucial factor in raising a building's energy efficiency involves utilizing bricks with high thermal resistance. This issue is accompanied by another critical challenge: recycling and disposing of waste in a way that is both economically and environmentally beneficial, including using it to fuel industrial growth, in order to reduce the harmful effects of waste on the environment as waste generation in our societies grows.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mechanical Engineering, Addis Ababa Science and Technology University, Addis Ababa, 16417, Ethiopia.
Many approaches have been implemented in order to reduce the emissions of particular pollutants without compromising engine performance. Cotton and castor mixed seed oil was chosen for the current study due to their distinct fatty acid composition and potential as a feedstock for bio-additives. Three fuel samples-99 % diesel and 1 % blended fuel (cottonseed oil + castor seed oil), 99.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!