Illicit drugs are often made in less-than-sterile environments and can be stored in ways which can be detrimental to any DNA present, such as whether they are exposed to UV radiation. Previously, analysis of how exposure to UV impacted DNA for forensic applications has been in controlled laboratory conditions isolating a single component of UV radiation and often on DNA-rich samples such as bloodstains or saliva. To evaluate DNA persistence in more realistic conditions, capsules, such as those used to distribute controlled substances, were manually made and then packed into ziplock bags. The persistence of DNA deposited on capsules was examined when left indoors in either, complete darkness, direct sunlight in high UV conditions (summer) or in low UV conditions (winter) for three weeks in ambient room temperature. The DNA yield, STR DNA profile quality and degradation index were all analysed to determine the impact of varied UV exposure on DNA in a semi-temperature-controlled environment. Capsule samples exposed to high UV conditions had significantly reduced DNA yields, a lower number of alleles from the capsule handler and, thus, reduced likelihood ratios compared to capsules exposed to darkness and low UV conditions. Samples exposed to either darkness or low UV had little-to-no differences in all DNA quality measures tested. Despite a decreased DNA yield and poorer quality DNA profiles, capsules left in high UV conditions for three weeks have sufficient DNA for DNA profiles with over half the genetic information present. The storage conditions of drug capsules, either before or after seizure by law enforcement, can impact the DNA persistence in as little as three weeks, which is problematic for often already low concentrations of DNA in trace samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.forsciint.2025.112383 | DOI Listing |
JCI Insight
January 2025
Medical Oncology Department, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, Netherlands.
Background: Previously, we demonstrated that changes in circulating tumor DNA (ctDNA) are promising biomarkers for early response prediction (ERP) to immune checkpoint inhibitors (ICI) in metastatic urothelial cancer (mUC). In this study, we investigated the value of whole blood immunotranscriptomics for ERP-ICI and integrated both biomarkers into a multimodal model to boost accuracy.
Methods: Blood samples of 93 patients were collected at baseline and after 2-6 weeks of ICI for ctDNA (N=88) and immunotranscriptome (N=79) analyses.
JAMA Oncol
January 2025
Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea.
Importance: An accurate noninvasive biomarker test is needed for the early diagnosis of bladder cancer.
Objective: To evaluate the performance of a urinary DNA methylation test (PENK methylation) and compare its diagnostic accuracy with that of the nuclear matrix protein 22 (NMP22) test or urine cytology test.
Design, Setting, And Participants: In this prospective multicenter study at 10 sites in the Republic of Korea, individuals 40 years and older with hematuria undergoing cystoscopy within 3 months between March 11, 2022, and May 30, 2024, participated.
Adv Biotechnol (Singap)
December 2024
School of Food Science and Technology, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, China.
Bio-nanopore technology holds great promise in biomacromolecule detection, with its high throughput and low cost positioning it as an ideal detection tool. This technology employs a unique detection mechanism that utilizes nanoscale pores to rapidly and sensitively convert biological molecules interactions into electrical signals, enabling real-time, single-molecule detection with exceptional sensitivity. This review focuses on the latest advancements in this technology across various domains, including DNA and RNA sequencing, protein detection, and small molecule identification.
View Article and Find Full Text PDFJ Assist Reprod Genet
January 2025
Ovarian Physiopathology Studies Laboratory, Institute of Experimental Biology and Medicine (IByME) - CONICET, Buenos Aires, Argentina.
Purpose: This study aimed to evaluate the long-term impact of mild COVID-19 infection and COVID-19 vaccination on ovarian function in patients undergoing assisted reproductive technology (ART). Specifically, we assessed ovarian outcomes between 9 and 18 months post-infection and investigated the effects of COVID-19 vaccines (inactivated virus and adenovirus) on reproductive parameters.
Methods: The study included two objectives: (a) examining ovarian function in post-COVID-19 patients (9-18 months post-infection) compared to a control group and (b) comparing reproductive outcomes in vaccinated versus unvaccinated patients.
Adv Biotechnol (Singap)
February 2024
Pingyuan Laboratory, Xinxiang, Henan, 453007, China.
RNA is an intermediary between DNA and protein, a catalyzer of biochemical reactions, and a regulator of genes and transcripts. RNA structures are essential for complicated functions. Recent years have witnessed rapid advancements in RNA secondary structure probing techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!