Fragment-Based Drug Discovery (FBDD) has revolutionized drug discovery by overcoming the challenges of traditional methods like combinatorial chemistry and high-throughput screening (HTS). Leveraging small, low-molecular-weight fragments, FBDD achieves higher hit rates, reduced screening costs, and faster development timelines for clinically relevant drug candidates. This review explores FBDD's core principles, innovative methodologies, and its success in targeting diverse protein classes, including previously "undruggable" targets. Key advancements in fragment libraries, screening techniques, and computational tools are discussed, along with the efficient progression from fragment hits to clinical drugs. Notably, we highlight FDA-approved fragment-derived drugs, including capivasertib, which has increased the total number of fragment-based oncology drugs to seven. As FBDD continues to evolve, its potential to address unmet therapeutic needs and drive the discovery of groundbreaking treatments across various disease areas becomes increasingly evident.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2025.108197 | DOI Listing |
Mol Divers
January 2025
Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
Discoidin domain receptors (DDR) are categorized under tyrosine kinase receptors (RTKs) and play a crucial role in various etiological conditions such as cancer, fibrosis, atherosclerosis, osteoarthritis, and inflammatory diseases. The structural domain rearrangement of DDR1 and DDR2 involved six domains of interest namely N-terminal DS, DS-like, intracellular juxtamembrane, transmembrane juxtamembrane, extracellular juxtamembrane intracellular kinase domain, and the tail portion contains small C-tail linkage. DDR has not been explored to a wide extent to be declared as a prime target for any particular pathological condition.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
September 2024
Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
Autophagy is a conserved catabolic recycling pathway that can eliminate cytosolic materials to maintain homeostasis and organelle functions. Many studies over the past few decades have demonstrated that abnormal autophagy is associated with a variety of diseases. Protein lipidation plays an important role in the regulation of autophagy by affecting protein trafficking, localization, stability, interactions and signal transduction.
View Article and Find Full Text PDFAnal Chem
January 2025
Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
Oxymetholone and methasterone are anabolic androgenic steroids prohibited by the World Anti-Doping Agency (WADA) for both in-competition and out-of-competition use. Detecting metabolites of exogenous steroids is crucial for establishing doping violations, making the study of these metabolites essential in antidoping efforts. This study investigated the urinary metabolic profiles of oxymetholone and methasterone using gas chromatography-orbitrap high-resolution mass spectrometry (GC-Orbitrap-HRMS) in nanogram level by utilizing a novel multiplex nontargeted framework protocol.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Institute of Pharmacy, Nirma University, Gujarat, 382481, India.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) discovery has added a new paradigm to our understanding of cholesterol homeostasis and lipid metabolism. Since its discovery, PCSK9 inhibitors have become a widely investigated therapeutic class for lipid management in cardiovascular diseases and hypercholesterolemia. Scientists have explored different approaches for PCSK9 inhibition, such as monoclonal antibodies (mAbs), gene silencing and gene editing techniques, vaccines, mimetic peptides, and small molecules.
View Article and Find Full Text PDFNat Prod Res
January 2025
Laboratory of Natural Products and Heterocyclic Synthesis, Department of Organic Chemistry, Faculty of Sciences, The University of Yaoundé 1, Yaoundé, Cameroon.
From the leaves of , fourteen compounds were isolated and identified: D-mannitol (), a mixture of β-sitosterol () and stigmasterol (), α-amyrin (), betulin (), lupeol (), lupenone (), betulinic acid (), taraxerol (), 3β-(E)-coumaroyltaraxerol (), 3β-(Z)-coumaroyltaraxerol (), ursolic acid (), stigmasterol 3-O-β-D-glucoside (), and β-sitosterol 3-O-β-D-glucoside (). These compounds were analysed through NMR spectroscopy (both 1D and 2D) and by comparing them to previously published data. Compounds , , , and - have been identified from this species for the first time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!