Processed cheese faces challenges related to short shelf life and susceptibility to microbial contamination during room temperature storage. Nisin, a natural antimicrobial peptide used for food preservation, exhibits limited sustained activity and a narrow antimicrobial spectrum, making its enhancement essential. To address these issues, this study employed electrostatic self-assembly technology to develop chitosan-pectin nanoparticles loaded with nisin (CNP) to improve processed cheese stability at room temperature. The CNPs formed through electrostatic interactions and hydrogen bonding, exhibited ellipsoidal or polyhedral shapes. The encapsulation efficiency and loading capacity of CNPs were 73.93 % and 34.48 %. The CNPs provided sustained nisin release, significantly inhibiting the growth of Gram-negative bacteria such as Escherichia coli and Salmonella enterica. Notably, the addition of CNP, extended the shelf life of processed cheese by at least 21 days at room temperature, maintaining product stability. This study presents an innovative and efficient solution for processed cheese preservation at room temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2025.143103 | DOI Listing |
Phys Chem Chem Phys
January 2025
Departamento de Físico-Química, Instituto de Química - Universidade Federal da Bahia, Rua Barão de Jeremoabo, 147, Salvador, Bahia, 40170-115, Brazil.
We report a computational study of the gas-phase and water-mediated mechanisms for the oxidation of carbonyl sulfide (OCS) by the hydroxyl radical. To achieve reliable results, we employ a dual-level strategy within interpolated single-point energies (VTST-ISPE) at the CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ level of theory. In the gas-phase mechanism, we have determined the rate constants by kinetic Monte Carlo simulation in the interval of temperatures of 250-550 K.
View Article and Find Full Text PDFDalton Trans
January 2025
Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
Boriranes, highly strained three-membered cyclic organoboron heterocycles, have emerged as potential synthons for the synthesis of many organoboron species. However, the synthesis of boriranes with tricoordinate, sp-hybridised boron and tetracoordinate, sp-hybridised carbon atoms is very challenging owing to their high Lewis acidity. Herein we describe the isolation of base-free triaminoboriranes from the room-temperature reaction of diaminoalkynes with an aminodistannylborane.
View Article and Find Full Text PDFInorg Chem Front
December 2024
University of Innsbruck, Department of General, Inorganic and Theoretical Chemistry Innrain 80-82 6020 Innsbruck Austria
We report the synthesis of dianionic OCO-supported NHC and MIC complexes of molybdenum and tungsten with the general formula (OCO)MO (OCO = bis-phenolate benzimidazolylidene M = Mo (1-Mo), bis-phenolate triazolylidene M = Mo (2-Mo), M = W (2-W) and bis-phenolate imidazolylidene, M = Mo (3-Mo), W (3-W)). These complexes are tested in the catalytic deoxygenation of nitroarenes using pinacol as a sacrificial oxygen atom acceptor/reducing agent to examine the influence of the carbene and the metal centre in this transformation. The results show that the molybdenum-based triazolylidene complex 2-Mo is by far the most active catalyst, and TOFs of up to 270 h are observed, while the tungsten analogues are basically inactive.
View Article and Find Full Text PDFFront Chem
January 2025
Laboratorio de Fitopatología, Escuela de Ciencias Agrarias, Universidad Nacional, Heredia, Costa Rica.
is an antagonistic fungus used commercially; however, the viability of these formulations is affected by biotic and abiotic factors. In this research, microcapsules of sodium alginate reinforced with nanocellulose and/or chitosan were developed to encapsulate conidia and characterized by SEM, FTIR, and TGA. The viability of the microencapsulated conidia was evaluated through different temperatures (room temperature, 5°C and 37°C), as well as their antagonistic potential against .
View Article and Find Full Text PDFACS Sens
January 2025
Department of Physics, National Chung Hsing University, Taichung 402, Taiwan.
Next-generation real-time gas sensors are crucial for detecting multiple gases simultaneously with high sensitivity and selectivity. In this study, ternary metal sulfide (PbSnS)-incorporated metal oxide (SnO) heterostructures were synthesized via a one-step hydrothermal method. Characterizations such as X-ray diffraction, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy confirmed the successful formation of PbSnS/SnO heterostructures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!