This work revealed the effects of endogenous proteins on the structural, physicochemical, and digestive properties of starch in corn before and after ripening and explored the binding mechanism of proteins with starch. The microstructure showed that the postharvest ripening process resulted in a thinning of the protein layer on the surface of starch particle. After the removal of protein, the uniformity of the sample surface increased, with tiny pores. The proportion of double helix structure of starch were significantly reduced, while the proportion of amorphous structure and the thickness (d) of the amorphous region were significantly increased. The gelatinization enthalpy, gelatinization viscosity value, consistency coefficient, elasticity, and rapid digestibility of starch (RDS) were all significantly increased. Due to the weakening of the interaction between starch (including amylose and amylopectin) and protein in post-ripened corn, the effect of protein removal on the structure and properties of unripened samples was more significant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2025.143039DOI Listing

Publication Analysis

Top Keywords

digestive properties
8
starch
7
endogenous protein
4
protein starch
4
starch post-harvest
4
post-harvest ripening
4
ripening corn
4
structure
4
corn structure
4
structure pasting
4

Similar Publications

Cecropin AD ameliorates pneumonia and intestinal injury in mice with mycoplasma pneumoniae by mediating gut microbiota.

BMC Vet Res

January 2025

Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Animals infected with mycoplasma pneumoniae not only develop respiratory diseases, but also cause digestive diseases through the lung-gut axis mediated by the intestinal flora, and vice versa. Antimicrobial peptides are characterized by their bactericidal, anti-inflammatory, and intestinal flora-regulating properties. However, the effect of cecropin AD (CAD) against mycoplasma pneumonia remains unclear.

View Article and Find Full Text PDF

Plastic pollution and global warming are widespread issues that lead to several impacts on aquatic organisms. Despite harmful studies on both subjects, there are few studies on how temperature increases plastics' adverse effects on aquatic animals, mainly freshwater species. So, this study aims to clarify the potential impact of temperature increases on the toxicological properties of polyvinyl chloride nano-plastics (PVC-NPs) in Nile tilapia (Oreochromis niloticus) by measuring biochemical and oxidative biomarkers.

View Article and Find Full Text PDF

Advances in Pharmacological Research on Icaritin: A Comprehensive Review.

Am J Chin Med

January 2025

Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China.

has been widely used in traditional Chinese medicine for several thousands of years. This plant is known for tonifying kidney Yang, strengthening muscles and bones, and dispelling wind and dampness. It is worth noting that icaritin, a prenylated flavonoid isolated from , has received increasing attention in recent years due to its wide range of pharmacological activities.

View Article and Find Full Text PDF

Promoting caproate production using anaerobically digested sludge-derived biochar: Performances, mechanisms, and environmental impacts.

Bioresour Technol

January 2025

School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:

Carbon chain elongation offers a promising pathway for converting waste resources into caproate. However, challenges in yield and selectivity have limited its broader application. To address these limitations, anaerobically digested sludge-derived biochar (ADS-B) was incorporated into the carbon chain elongation process.

View Article and Find Full Text PDF

Type 1 resistant starch (RS1) was prepared by high-pressure homogenization of corn starch (CS) embedded with 0.1 %, 0.3 %, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!