Direct thrombin inhibitors (designated as EuRL-DTIs) were partially purified from ethanol extracts of Euphorbia resinifera O.Berg latex. The obtained EuRL-DTIs comprised four major compounds: two isomers of phenolic compounds (CHO) and two amide compounds (tentatively identified as CHNO and CHNO), as identified by liquid chromatography and electrospray ionisation quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS), attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, and/or nuclear magnetic resonance (NMR) spectroscopy. The effects of EuRL-DTIs on human thrombin-induced fibrin clot production were analysed using thrombin time, sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), synchrotron radiation X-ray tomographic microscopy (SRXTM), and scanning electron microscopy (SEM). Kinetic studies revealed that EuRL-DTIs inhibited human thrombin from cleaving the chromogenic substrate S2238, with a K of 3.7 μg/mL, in a non-competitive inhibition manner. All results supported the hypothesis that the EuRL-DTIs directly abolished thrombin activity in the production of fibrin clots without requiring a cofactor. The cytotoxicity test showed that EuRL-DTIs were nontoxic to normal human foetal lung fibroblasts (IMR-90). Thus, EuRL-DTIs have potential as antithrombotic agents for application as drugs for thrombosis treatments or in medical devices such as coating surgical sutures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2025.124480DOI Listing

Publication Analysis

Top Keywords

direct thrombin
8
thrombin inhibitors
8
euphorbia resinifera
8
resinifera oberg
8
oberg latex
8
fibrin clot
8
eurl-dtis
7
thrombin
5
potential application
4
application direct
4

Similar Publications

Direct thrombin inhibitors (designated as EuRL-DTIs) were partially purified from ethanol extracts of Euphorbia resinifera O.Berg latex. The obtained EuRL-DTIs comprised four major compounds: two isomers of phenolic compounds (CHO) and two amide compounds (tentatively identified as CHNO and CHNO), as identified by liquid chromatography and electrospray ionisation quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS), attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, and/or nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

Glycan-Matchmade Multivalent Decoration of Enzyme Labels for Amplified Electrochemical Detection of Glycoproteins.

Anal Chem

January 2025

Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.

Glycoproteins are of significant value to liquid biopsy of human diseases. Herein, we present a universal electrochemical platform for the amplified detection of glycoproteins, taking advantage of the glycan-matchmade multivalent decoration of enzyme labels for the enzymatic signal amplification. Briefly, the glycan-matchmade multivalent decoration involves two steps, i.

View Article and Find Full Text PDF

single nucleotide polymorphism reduces dabigatran acylglucuronide formation in humans.

Front Pharmacol

January 2025

Department of Clinical Pharmacology and Toxicology, Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea.

Background: Dabigatran etexilate (DABE), a prodrug of dabigatran (DAB), is a direct thrombin inhibitor used to prevent ischemic stroke and thromboembolism during atrial fibrillation. The effect of genetic polymorphisms on its metabolism, particularly , has not been extensively explored in humans. This study aimed to investigate the effects of , , and polymorphisms on the pharmacokinetics of DAB and its acylglucuronide metabolites in healthy subjects.

View Article and Find Full Text PDF

Background: Anticoagulants are the primary means for the treatment and prevention of venous thromboembolism (VTE), but their clinical standardized application still remains controversial. The present study intends to comprehensively compare the efficacy and safety of various anticoagulants in VTE.

Methods: Medline, Embase, and Cochrane Library from their inception up to August 2023 were searched to compare the efficacy and safety of various anticoagulants in VTE.

View Article and Find Full Text PDF

Exosite crosstalk in thrombin.

J Thromb Haemost

January 2025

Department of Medicine, McMaster University; Department of Biochemistry and Biomedical Sciences, McMaster University; Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences.

Thrombin is the central mediator of hemostasis, where it converts fibrinogen to fibrin, activates upstream factors to promote coagulation, activates factor XIII and thrombin-activatable fibrinolysis inhibitor to stabilize fibrin, mediates anticoagulation, and modulates cellular activity via cell surface receptors. Thus, regulation of thrombin activity is essential to the hemostatic balance. Thrombin is regulated by positively charged surface domains that surround the active site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!