Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5935/0004-2749.2024-1015 | DOI Listing |
Arq Bras Oftalmol
January 2025
Ophthalmology Department, Universidade de São Paulo, São Paulo, SP, Brazil.
J Sci Food Agric
January 2025
Bee and Natural Products R&D and P&D Application and Research Center, Bingöl University, Bingöl, Turkey.
Background: Phlomis capitata is an endemic species of flowering aromatic and medicinal plant in the family Lamiaceae, native to regions of the Mediterranean and nearby areas. Understanding the chemical compounds present in P. capitata can reveal potential medicinal properties.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
Background/purpose: Various pulp-covering materials offer advantages in regenerative root canal treatment, but each has limitations, highlighting the need for more effective antibacterial strategies for pulp repair and regeneration. Mesoporous bioactive glasses (MBG) show significant biological activity, making them valuable in tissue/dental repair. Silver-incorporated MBG exhibits promising antibacterial effects against various bacteria; copper ions are crucial in regulating angiogenesis signals.
View Article and Find Full Text PDFBMC Oral Health
January 2025
School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Introduction: Mineral trioxide aggregate (MTA) is a calcium silicate-based cement that has changed conventional dental therapeutic approaches. This study aimed to evaluate physical, chemical and biological properties of novel AGM MTA, in comparison with MTA Angelus.
Methods: The samples were prepared according to the manufacturer's instructions.
Biol Aujourdhui
January 2025
Sorbonne Université, CNRS, Inserm U1156, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 9 Quai St-Bernard, 75005 Paris, France.
The advent of high-throughput omics data and the generation of new algorithms provide the biologists with the opportunity to explore living processes in the context of systems biology aiming at revealing the gene interactions, the networks underlying complex cellular functions. In this article, we discuss two methods for gene network reconstruction, WGCNA (Weighted Gene Correlation Network Analysis) developed by Steve Horvath and collaborators in 2008, and MIIC (Multivariate Information-based Inductive Causation) developed by Hervé Isambert and his team in 2017 and 2024. These two methods are complementary, WGCNA generating undirected networks in which most gene-to-gene interactions are indirect, while MIIC reveals direct interactions and some causal links.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!