Distinguishing Charged Lepton Flavor Violation Scenarios with Inelastic μ→e Conversion.

Phys Rev Lett

University of California, Department of Physics, Berkeley, California 94720, USA.

Published: December 2024

The Mu2e and COMET experiments are expected to improve existing limits on charged lepton flavor violation (CLFV) by roughly 4 orders of magnitude. μ→e conversion experiments are typically optimized for electrons produced without nuclear excitation, as this maximizes the electron energy and minimizes backgrounds from the free decay of the muon. Here we argue that Mu2e and COMET will be able to extract additional constraints on CLFV from inelastic μ→e conversion, given the ^{27}Al target they have chosen and backgrounds they anticipate. We describe CLFV scenarios in which inelastic CLFV can induce measurable distortions in the near-endpoint spectrum of conversion electrons, including cases where certain contributing operators cannot be probed in elastic μ→e conversion. We extend the nonrelativistic EFT treatment of elastic μ→e conversion to include the new nuclear operators needed for the inelastic process, evaluate the associated nuclear response functions, and describe several new-physics scenarios where the inelastic process can provide additional information on CLFV.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.261801DOI Listing

Publication Analysis

Top Keywords

μ→e conversion
20
scenarios inelastic
12
charged lepton
8
lepton flavor
8
flavor violation
8
inelastic μ→e
8
mu2e comet
8
elastic μ→e
8
inelastic process
8
conversion
6

Similar Publications

The composition conversion in block copolymer induced by external stimuli such as light and pH is an effective strategy to trigger the disassembly of vesicles experimentally. Based on this strategy, the disassembly behavior of the ABA triblock copolymer vesicle induced by the composition conversion from B block to C block was studied using Monte Carlo simulation. In this study, a part of the B block in the ABA triblock copolymer was converted to the new block C with weaker hydrophobicity, forming the ABCA tetrablock copolymer.

View Article and Find Full Text PDF

Proximity-Induced Superconductivity in Ferromagnetic FeGeTe and Josephson Tunneling through a van der Waals Heterojunction.

ACS Nano

January 2025

International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China.

Synergy between superconductivity and ferromagnetism may offer great opportunities in nondissipative spintronics and topological quantum computing. Yet at the microscopic level, the exchange splitting of the electronic states responsible for ferromagnetism is inherently incompatible with the spin-singlet nature of conventional superconducting Cooper pairs. Here, we exploit the recently discovered van der Waals ferromagnets as enabling platforms with marvelous controllability to unravel the myth between ferromagnetism and superconductivity.

View Article and Find Full Text PDF

Introduction: Metabolic and bariatric surgery (MBS) is increasingly used for obesity and metabolic disease, with safety profiles showing it is among the safest major operations. The last 20 + years have noted significantly improved safety that has been accompanied by decreasing length of stay and select populations electing for outpatient surgery, leading to continued decreases in cost. Regardless, readmissions and complications still occur, requiring inpatient postoperative care (IP-POC).

View Article and Find Full Text PDF

Background: Patients with prior abdominal surgeries are at higher risk of intra-peritoneal adhesions near the trocar entry site, increasing the likelihood of organ injury during laparoscopic cholecystectomy (LC). This study evaluates a novel technique where the epigastric trocar is inserted first, after creating pneumoperitoneum, to allow safe dissection of adhesions under direct vision before placing the umbilical trocar.

Methods: This prospective study included 244 patients with symptomatic uncomplicated gallstone disease and a history of previous abdominal surgeries extending to the umbilicus.

View Article and Find Full Text PDF

(ZnO) Cluster Decorated 2D Porous CN Materials as Efficient Solar Cells.

J Phys Chem A

January 2025

College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, China.

Developing high-performance solar cells is a practical way to improve clean energy conversion efficiency. However, the performance of solar cells faces challenges such as fast carrier combination, poor stability, and limited solar light harvesting. Herein, we propose a strategy by decorating periodic holes in two-dimensional (2D) porous carbon-nitrogen (CN) materials with a zero-dimensional (0D) semiconducting (ZnO) cluster.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!