Phase Switch Driven by the Hidden Half-Ice, Half-Fire State in a Ferrimagnet.

Phys Rev Lett

Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Division, Upton, New York 11973, USA.

Published: December 2024

The notion of "half fire, half ice" was recently introduced to describe an exotic macroscopic ground-state degeneracy emerging in a ferrimagnet under the critical magnetic field, in which the "hot" spins are fully disordered on the sublattice with smaller magnetic moments and the "cold" spins are fully ordered on the sublattice with larger magnetic moments. Here, we further point out that this state has a twin named "half ice, half fire" in which the hot and cold spins switch positions. The new state is an excited state-thus hidden in the ground-state phase diagram-and is robust with respect to the interactions that destroy the half-fire, half-ice state. We demonstrate with exact results how this hidden state can drive phase switching at desirable finite temperature, even for the one-dimensional Ising model where phase transition at finite temperature is forbidden. We suggest that our findings may open a new door to the understanding and controlling of phase competition and transition in unconventional frustrated systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.266701DOI Listing

Publication Analysis

Top Keywords

spins fully
8
magnetic moments
8
finite temperature
8
phase
5
state
5
phase switch
4
switch driven
4
driven hidden
4
hidden half-ice
4
half-ice half-fire
4

Similar Publications

Phase Switch Driven by the Hidden Half-Ice, Half-Fire State in a Ferrimagnet.

Phys Rev Lett

December 2024

Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Division, Upton, New York 11973, USA.

The notion of "half fire, half ice" was recently introduced to describe an exotic macroscopic ground-state degeneracy emerging in a ferrimagnet under the critical magnetic field, in which the "hot" spins are fully disordered on the sublattice with smaller magnetic moments and the "cold" spins are fully ordered on the sublattice with larger magnetic moments. Here, we further point out that this state has a twin named "half ice, half fire" in which the hot and cold spins switch positions. The new state is an excited state-thus hidden in the ground-state phase diagram-and is robust with respect to the interactions that destroy the half-fire, half-ice state.

View Article and Find Full Text PDF

The ground states of two-species condensates with spin-1 atoms have been studied analytically and numerically. All the results from the analytical approach are checked by the latter. The [Formula: see text] channel has been neglected, where λ is the coupled spin of two different atoms.

View Article and Find Full Text PDF

RF Heating Effects in CEST NMR with Hyperpolarized 129Xe Considering Different Spin Exchange Kinetics and Saturation Schemes.

Chemphyschem

January 2025

Deutsches Krebsforschungszentrum, Translational Molecular Imaging, Im Neuenheimer Feld 223, 69120, Heidelberg, GERMANY.

Chemical exchange saturation transfer (CEST) improves the sensitivity of NMR but depending on the spin exchange kinetics, it can require substantial RF energy deposition to label magnetization. Potential side effects like RF-induced heating may occur and must be monitored. Here, we explore the parameter space considering not only undesired heating but efficient CEST build-up (depolarization rate), spectral resolution (line width), and subsequent effects like changes in chemical shifts of CEST responses must be considered, too.

View Article and Find Full Text PDF

Controlling spin-polarized currents at the nanoscale is of immense importance for high-density magnetic data storage and spin-based logic devices. As electronic devices are miniaturized to the ultimate limit of individual atoms and molecules, electronic transport is strongly influenced by the properties of the individual spin centers and their magnetic interactions. In this work, we demonstrate the precise control and detection of spin-polarized currents through two coupled spin centers at a tunnel junction by controlling their spin-spin interactions.

View Article and Find Full Text PDF

Large stroke radially oriented MXene composite fiber tensile artificial muscles.

Sci Adv

January 2025

School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China.

Actuation is normally dramatically enhanced by introducing so much yarn fiber twist that the fiber becomes fully coiled. In contrast, we found that usefully high muscle strokes and contractile work capacities can be obtained for non-twisted MXene (TiCT) fibers comprising MXene nanosheets that are stacked in the fiber direction. The MXene fiber artificial muscles are called MFAMs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!