Dental ultrasonic scalers are commonly employed in periodontal treatment; however, their ability to roughen tooth surfaces is a worry since roughness may increase plaque production, a key cause of periodontal disease. This research studied the influence of a piezoelectric ultrasonic scaler on the roughness of two distinct flowable composite filling materials. To do this, 10 disc-shaped samples were generated from each of the two flowable composite materials. After standardized polishing, samples were submerged in water for 24 h before the first surface examination using electron microscopy and profilometry. The ultrasonic scaler was applied to a specified location of each sample for 60 s under water cooling and regulated force. Post-scaler surface parameters were again examined. Following the application of the scaler, both composite materials exhibited a notable increase in surface roughness, as determined by profilometry (p < 0.01). Additionally, the observed surface roughness was also qualitatively visualized with scanning electron microscopy. While initial roughness levels were comparable across the two composites (p = 0.143) after scaler application, no substantial discrepancy in surface texture was noticed between them (p = 0.684). The use of a high-power piezoelectric ultrasonic scaler on routinely used flowable composite restorations might generate considerable surface roughness, possibly leading to increased plaque accumulation. Nevertheless, it might be postulated that nanohybrid flowable composite materials having conventional monomer ingredients may demonstrate comparable surface alterations within the limitations of this experiment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/67446 | DOI Listing |
J Vis Exp
January 2025
Faculty of Dentistry, Department of Periodontology, Marmara University;
Dental ultrasonic scalers are commonly employed in periodontal treatment; however, their ability to roughen tooth surfaces is a worry since roughness may increase plaque production, a key cause of periodontal disease. This research studied the influence of a piezoelectric ultrasonic scaler on the roughness of two distinct flowable composite filling materials. To do this, 10 disc-shaped samples were generated from each of the two flowable composite materials.
View Article and Find Full Text PDFDent J (Basel)
January 2025
Department of Restorative Dentistry, Faculty of Dentistry, Yeditepe University, İstanbul 34728, Turkey.
This study aimed to investigate the microtensile bond strength (µTBS) of composite-based (Cerasmart), polymer-infiltrated (Vita Enamic), and feldspathic (Cerec) CAD/CAM blocks luted to dentin using a dual-cure resin cement (LinkForce), as well as micro-hybrid (G-aenial) and flowable composites (G-aenial Universal Flo), and evaluate the microhardness (HV) of luting materials through the CAD/CAM blocks. Cerasmart, Enamic, and Cerec were luted to dentin using three luting materials; LinkForce, G-aenial, and Universal Flo (n = 5). For HV, 117 disk-shaped specimens from LinkForce, G-aenial, and Universal Flo (n = 13) were polymerized through 3 mm thick CAD/CAM.
View Article and Find Full Text PDFDent J (Basel)
December 2024
Department of Life, Health and Environmental Sciences, Postgraduate School of Orthodontics, University of L'Aquila, 67100 L'Aquila, Italy.
The injection moulding technique (IMT) is a minimally invasive restorative treatment. This technique enables the application of thin, flowable composite layers into a stable, transparent silicone index that serves as a mould. Due to the fluid properties of the composite, it efficiently fills the silicone tray and seamlessly integrates with the tooth structure, often obviating tooth preparation and preserving overall tooth integrity.
View Article and Find Full Text PDFDent J (Basel)
December 2024
Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy Iasi, Str. Universitatii No. 16, 700115 Iasi, Romania.
: The aim of this study was to evaluate the influence of acidic beverages on the mechanical properties of various dental resin-based materials. : A total number of 160 samples were prepared using four types of resin-based materials-Group A ( = 40): flowable composite, Group B ( = 40): heavy-flow composite, Group C ( = 40): resin-based sealant and Group D ( = 40): nano-hybrid composite. Then, the samples were distributed into four subgroups according to the submersion solution: ( = 10): artificial saliva, ( = 10): coffee, ( = 10): cola and ( = 10): red wine.
View Article and Find Full Text PDFJ Esthet Restor Dent
January 2025
Department of Restorative Dentistry, Faculty of Dentistry, Kırıkkale University, Kırıkkale, Türkiye.
Objective: This in vitro study aims to evaluate the effect of placing polyethylene fibers used in large Class II MOD (mesio-occlusion-distal) cavities into different flowable resin composites and in different positions on the fracture resistance of the restoration.
Materials And Methods: Ninety healthy human molars were used in the study. No treatment was performed on 10 of these teeth and they were used as the control group.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!