The extent of functional sequences within the human genome is a pivotal yet debated topic in biology. Although high-throughput reverse genetic screens have made strides in exploring this, they often limit their scope to known genomic elements and may introduce non-specific effects. This underscores the urgent need for novel functional genomics tools that enable a deeper, unbiased understanding of genome functionality. This protocol introduces the Insertion-based Screen for functional Elements and Transcripts (InSET), a method for identifying lentivirus integration sites within a lentivirus-based insertional mutagenesis cell library. InSET facilitates the capture of genome-wide lentiviral integration sites, with next-generation sequencing used to detect and quantify flanking sequences. InSET's design enables the analysis of integration site abundance variations in phenotypic screens on a large scale, establishing it as a robust tool for forward genetics and for identifying functional genomic elements. A key benefit of InSET is its capacity to reveal previously unidentified genomic elements, including novel functional exons of both protein-coding and non-coding RNAs, independent of prior annotation. Overall, InSET holds significant value in studying the intricate complexity of the human genome and transcriptome, where many genomic elements await functional characterization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/67552 | DOI Listing |
Sci Rep
January 2025
Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India.
Magnesium (Mg) an essential plant nutrient is widespread deficient in the acidic soils of Nilgiris of Tamil nadu, India. The vegetable yield and quality is especially affected due to deficiency of nutrients like Mg. This study investigates soil characteristics and bacterial diversity in the Nilgiris district of Tamil Nadu, India, with respect to Mg deficiency.
View Article and Find Full Text PDFSci Rep
January 2025
MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
Bulk ATAC-seq assays have been used to map and profile the chromatin accessibility of regulatory elements such as enhancers, promoters, and insulators. This has provided great insight into the regulation of gene expression in many cell types in a variety of organisms. To date, ATAC-seq has most often been used to provide an average evaluation of chromatin accessibility in populations of cells.
View Article and Find Full Text PDFSci Rep
January 2025
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer, notoriously refractory to conventional chemotherapy. Historically, sulfane sulfur-based compounds have been explored for the treatment of HCC, but their efficacy has been underwhelming. We recently reported a novel sulfane sulfur donor, PSCP, which exhibited improved chemical stability and structural malleability.
View Article and Find Full Text PDFFuture Microbiol
January 2025
Universidad San Francisco de Quito, Colegio de Ciencias Biológicas Ambientales, Instituto de Microbiología, Quito, Ecuador.
Aim: To investigate the nucleotide sequences associated with transposable elements carrying bla allelic variants as potential markers for the transmission of antimicrobial resistance genes between domestic animals, humans and the environment.
Materials & Methods: We conducted whole-genome sequencing and analyzed the nucleotide sequences of most abundant bla allelic variants (bla, bla, and bla) in commensal Escherichia coli ( = 20) from household members in Quito and uropathogenic E. coli (UPEC) ( = 149) isolated from nine clinics in Quito, Ecuador.
J Biol Chem
January 2025
Indiana University School of Medicine, Indianapolis, Indiana; IU Simon Comprehensive Cancer Center, Indianapolis, Indiana; R.L. Roudebush Indianapolis VA Medical Center, Indianapolis, Indiana. Electronic address:
The Hhex gene encodes a transcription factor that is important for both embryonic and post-natal development, especially of hematopoietic tissues. Hhex is one of the most common sites of retroviral integration in mouse models. We found the most common integrations in AKXD (recombinant inbred strains) T-ALLs occur 57-61kb 3' of Hhex and activate Hhex gene expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!