This work researched the influence and mechanism of CD155 on hepatocellular carcinoma advancement. CD155 expression and its effect on survival of hepatocellular carcinoma patients were analyzed based on the GEPIA2 database. String software predicted the interacting between CD155 and CD96, which was further verified by co-immunoprecipitation experiment. The function of CD155 and CD96 on the proliferation, migration, and invasion of hepatocellular carcinoma cells (HCC) was explored by colony formation, wound healing, and transwell assays. To research the effect of CD155 and CD96 on ferroptosis, ferroptosis-related factors in HCC were investigated. CD155 and p53 were both silenced in HCC to explore whether CD155 regulates hepatocellular carcinoma progression by acting on p53. Xenograft tumor study was conducted to examine the impact of CD155 on the in vivo growth of HCC. It was discovered that, CD155 up-regulation predicted poor survival of hepatocellular carcinoma patients. CD155 could be interacted with CD96. The proliferation, migration, and invasion of HCC were heightened by CD155. However, ferroptosis was suppressed by CD155, as CD155 decreased p53 and iron but increased SLC7A11, GPX4 and GSH in HCC. In fact, CD96 silencing abolished these effects of CD155. The suppressed malignant behaviors and the enhanced ferroptosis in HCC induced by CD155 silencing were abrogated by p53 silencing. In vivo, CD155 silencing suppressed growth and enhanced ferroptosis of hepatocellular carcinoma, which were counteracted by p53 silencing. Thus, CD155 might facilitate hepatocellular carcinoma advancement through blocking the p53-mediated ferroptosis via interacting with CD96. CD155 might be a promising target for treating hepatocellular carcinoma. KEY MESSAGES: CD155 was up-regulated in hepatocellular carcinoma, predicting poor survival. CD155 protein could be interacted with CD96 protein. Proliferation and invasion of liver cancer cells were facilitated by CD155. Proliferation and invasion of liver cancer cells were decreased by CD96 loss. CD155 promoted liver cancer by suppressing p53-mediated ferroptosis via CD96.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00109-025-02515-2DOI Listing

Publication Analysis

Top Keywords

hepatocellular carcinoma
40
cd155
23
p53-mediated ferroptosis
12
cd155 cd96
12
liver cancer
12
hepatocellular
10
carcinoma
10
cd96
10
suppressing p53-mediated
8
ferroptosis interacting
8

Similar Publications

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a primary cause of chronic liver disease, with potential progression to cirrhosis and hepatocellular carcinoma (HCC). Although systemic inflammatory biomarkers are associated with liver diseases, their specific role in MASLD remains unclear. This study examines the association between systemic inflammatory biomarkers and MASLD.

View Article and Find Full Text PDF

ADSL promotes autophagy and tumor growth through fumarate-mediated Beclin1 dimethylation.

Nat Chem Biol

January 2025

Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.

As an enzyme with a critical role in de novo purine synthesis, adenylosuccinate lyase (ADSL) expression is upregulated in various malignancies. However, whether ADSL possesses noncanonical functions that contribute to cancer progression remains poorly understood. Here, we demonstrate that protein kinase R-like endoplasmic reticulum kinase (PERK) activated by lipid deprivation or ER stress phosphorylates ADSL at S140, leading to an enhanced association between ADSL and Beclin1.

View Article and Find Full Text PDF

AI decision support systems can assist clinicians in planning adaptive treatment strategies that can dynamically react to individuals' cancer progression for effective personalized care. However, AI's imperfections can lead to suboptimal therapeutics if clinicians over or under rely on AI. To investigate such collaborative decision-making process, we conducted a Human-AI interaction study on response-adaptive radiotherapy for non-small cell lung cancer and hepatocellular carcinoma.

View Article and Find Full Text PDF

Objectives: To develop and validate radiomics and deep learning models based on contrast-enhanced MRI (CE-MRI) for differentiating dual-phenotype hepatocellular carcinoma (DPHCC) from HCC and intrahepatic cholangiocarcinoma (ICC).

Methods: Our study consisted of 381 patients from four centers with 138 HCCs, 122 DPHCCs, and 121 ICCs (244 for training and 62 for internal tests, centers 1 and 2; 75 for external tests, centers 3 and 4). Radiomics, deep transfer learning (DTL), and fusion models based on CE-MRI were established for differential diagnosis, respectively, and their diagnostic performances were compared using the confusion matrix and area under the receiver operating characteristic (ROC) curve (AUC).

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most prevalent form of liver cancer, and ranks among the most lethal malignancies globally, primarily due to its high rates of recurrence and metastasis. Despite the urgency, no reliable biomarkers currently exist for predicting tumor recurrence in HCC. Telomerase reverse transcriptase (TERT) promoter mutations (TERTpm) and cellular tumor antigen p53 mutations (TP53m) have been frequently documented in HCC, but their combined clinical significance remains undefined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!