Implicit solvation models permit the approximate description of solute-solvent interactions, where water is the most often considered solvent due to its relevance in biological systems. The use of other solvents is less common but is relevant for applications such as in nuclear magnetic resonance (NMR) or chromatography. As an example, chloroform is commonly used in anisotropic NMR to measure residual dipolar couplings (RDCs) of chiral analytes weakly aligned by an alignment medium. They can be calculated from molecular dynamics (MD) simulations with explicit solvent, but it is computationally expensive, because tens of microseconds-long MD trajectories should be collected. Here, we develop a computational protocol and numerical implementation for binding free energies of rigid organic molecules to poly-γ-benzyl-l-glutamate using an implicit solvation model of chloroform. The model parameters are fit to alchemical binding free energies obtained from MD simulations in explicit chloroform and compared to the MD results and another implicit solvation model. Possible applications of the method are docking or Monte Carlo simulations based on a physically meaningful scoring function for the fast prediction of interaction poses of ligands for selective binding or the alignment of analytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.4c08592 | DOI Listing |
J Phys Chem B
January 2025
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
Implicit solvation models permit the approximate description of solute-solvent interactions, where water is the most often considered solvent due to its relevance in biological systems. The use of other solvents is less common but is relevant for applications such as in nuclear magnetic resonance (NMR) or chromatography. As an example, chloroform is commonly used in anisotropic NMR to measure residual dipolar couplings (RDCs) of chiral analytes weakly aligned by an alignment medium.
View Article and Find Full Text PDFJ Mol Model
January 2025
Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu, People's Republic of China.
Context: The study of the influence of solvent on 1-bromo adamantane (BAD) exposes prominent solvatochromatic shifts in the optical absorbance and substantial solvent effects on the electronic structure. This facilitates the molecular probe abilities for the BAD with respect to the surrounding environments such as dielectric constant and polarity. BAD exhibits positive solvatochromism for nonpolar solvents and negative solvatochromatic shifts for polar and aromatic solvents.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile.
The standard Poisson-Boltzmann (PB) model for molecular electrostatics assumes a sharp variation of the permittivity and salt concentration along the solute-solvent interface. The discontinuous field parameters are not only difficult numerically, but also are not a realistic physical picture, as it forces the dielectric constant and ionic strength of bulk in the near-solute region. An alternative to alleviate some of these issues is to represent the molecular surface as a diffuse interface, however, this also presents challenges.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India. Electronic address:
Biodiesel is renewable energy source an alternative to conventional fossil fuels. The primary concern lies in detecting alcohol content in biodiesel, which can either be intentionally added by adulterants or remain in trace amounts from the refining process of biodiesel synthesis. In order to regulate the quality of biodiesel production, it is crucial to develop an analytical method for monitoring alcohol content in biodiesel.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
The complete active space second-order perturbation theory (CASPT2) is valuable for accurately predicting electronic structures and transition energies. However, optimizing molecular geometries in the solution phase has proven challenging. In this study, we develop analytic first-order derivatives of CASPT2 using an implicit solvation model, specifically the polarizable continuum model, within the open-source package OpenMolcas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!