is one of the commonly used hosts for heterologous enzyme expression, depending on media rich in carbon, nitrogen, and phosphate sources for optimal growth and enzyme production. Interestingly, our investigation of maltotetraose-forming amylase, a key enzyme for efficient maltotetraose synthesis, revealed that phosphate limitation significantly enhances the growth rate and production of heterologous enzymes in recombinant . Under phosphate-limited conditions in a 15 L fermenter, the enzyme activity reached 679.15 U/mL, an improvement of 101% over the initial levels and a 12 h reduction in fermentation time. Transcriptomic analysis indicated that phosphate limitation promotes sustained enzyme production by upregulating protein synthesis and quality control pathways while optimizing energy utilization. This strategy was validated across various enzyme systems, highlighting its general applicability for enhancing heterologous protein expressions. These findings provide valuable insights for the industrial production of maltotetraose-forming amylase and other high-value enzymes, supporting the advancement of microbial fermentation technology.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c10710DOI Listing

Publication Analysis

Top Keywords

phosphate limitation
12
enzyme production
12
limitation enhances
8
heterologous enzyme
8
maltotetraose-forming amylase
8
enzyme
7
production
5
phosphate
4
heterologous
4
enhances heterologous
4

Similar Publications

Long-term response mechanism of bacterial communities to chemical oxidation remediation in petroleum hydrocarbon contaminated groundwater.

J Hazard Mater

January 2025

College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University, Beijing 100875, PR China. Electronic address:

The limited understanding of microbial response mechanism remains as a bottleneck to evaluate the long-term remediation effectiveness of in situ chemical oxidation in contaminated groundwater. In this study, we investigated long-term response of bacterial communities throughout five remediation stages of pre-oxidation, early-oxidation, late-oxidation, early-recovery and late-recovery. By analyzing bacterial biomass, taxa, diversity and metabolic functions, this work identified the consistently suppressed glyceraldehyde-3-phosphate dehydrogenase pathway and the enrichment of naphthalene degradation pathways for secondary products, suggesting persistent oxidation stress and enhanced microbial utilization of lower-molecular weight carbon sources at the oxidation and early-recovery stages.

View Article and Find Full Text PDF

Molecularly imprinted hydrogels embedded with two-dimensional photonic crystals for the detection of dexamethasone/betamethasone sodium phosphate.

Mikrochim Acta

January 2025

Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, School of Medicine, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China.

Dexamethasone sodium phosphate (DSP) and betamethasone sodium phosphate (BSP) imprinted hydrogels embedded with two-dimensional photonic crystals (2DPC) were developed as hormones-sensitive photonic hydrogel sensors with highly sensitive, selective, anti-interference and reproducible recognition capability. The DSP/BSP molecularly imprinted photonic hydrogels (denoted as DSP-MIPH and BSP-MIPH) can specifically recognize DSP/BSP by rebinding the DSP/BET molecules to nanocavities in the hydrogel network. This recognition is enabled by the similar shape, size, and binding sites of the nanocavities to the target molecules.

View Article and Find Full Text PDF

Glycolysis is a conserved metabolic pathway that converts glucose into pyruvate in the cytosol, producing ATP and NADH. In and several other apicomplexan parasites, some glycolytic enzymes have isoforms located in their plastid (called the apicoplast). In this organelle, glycolytic intermediates like glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP) are imported from the cytosol and further metabolized, providing ATP, reducing power, and precursors for anabolic pathways such as isoprenoid synthesis.

View Article and Find Full Text PDF

is one of the commonly used hosts for heterologous enzyme expression, depending on media rich in carbon, nitrogen, and phosphate sources for optimal growth and enzyme production. Interestingly, our investigation of maltotetraose-forming amylase, a key enzyme for efficient maltotetraose synthesis, revealed that phosphate limitation significantly enhances the growth rate and production of heterologous enzymes in recombinant . Under phosphate-limited conditions in a 15 L fermenter, the enzyme activity reached 679.

View Article and Find Full Text PDF

The 55-carbon isoprenoid, undecaprenyl-phosphate (UndP), is a universal carrier lipid that ferries most glycans and glycopolymers across the cytoplasmic membrane in bacteria. In addition to peptidoglycan precursors, UndP transports O-antigen, capsule, wall teichoic acids, and sugar modifications. How this shared but limited lipid is distributed among competing pathways is just beginning to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!