Cells form multiple, molecularly distinct membrane contact sites (MCSs) between organelles. Despite knowing the molecular identity of several of these complexes, little is known about how MCSs are coordinately regulated in space and time to promote organelle function. Here, we examined two well-characterized mitochondria-ER MCSs - the ER-Mitochondria encounter structure (ERMES) and the mitochondria-ER-cortex anchor (MECA). We report that loss of MECA results in a substantial reduction in the number of ERMES contacts. Rather than reducing ERMES protein levels, loss of MECA results in an increase in the size of ERMES contacts. Using live cell microscopy, we demonstrate that ERMES contacts display several dynamic behaviors, such as de novo formation, fusion, and fission, that are altered in the absence of MECA or by changes in growth conditions. Unexpectedly, we find that the mitochondria-PM tethering, not the mitochondria-ER tethering, function of MECA regulates ERMES contacts. Remarkably, synthetic tethering of mitochondria to the PM in the absence of MECA is sufficient to rescue the distribution of ERMES foci. Overall, our work reveals how one MCS can influence the regulation and function of another.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.263685 | DOI Listing |
J Cell Sci
January 2025
Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
Cells form multiple, molecularly distinct membrane contact sites (MCSs) between organelles. Despite knowing the molecular identity of several of these complexes, little is known about how MCSs are coordinately regulated in space and time to promote organelle function. Here, we examined two well-characterized mitochondria-ER MCSs - the ER-Mitochondria encounter structure (ERMES) and the mitochondria-ER-cortex anchor (MECA).
View Article and Find Full Text PDFJ Biol Chem
January 2025
Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany. Electronic address:
Mitochondria derive the majority of their lipids from other organelles through contact sites. These lipids, primarily phosphoglycerolipids, are the main components of mitochondrial membranes. In the cell, neutral lipids like triacylglycerides (TAGs) are stored in lipid droplets, playing an important role in maintaining cellular health.
View Article and Find Full Text PDFFEBS Open Bio
October 2024
Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Germany.
β-barrel membrane proteins in the mitochondrial outer membrane are crucial for mediating the metabolite exchange between the cytosol and the mitochondrial intermembrane space. In addition, the β-barrel membrane protein subunit Tom40 of the translocase of the outer membrane (TOM) is essential for the import of the vast majority of mitochondrial proteins encoded in the nucleus. The sorting and assembly machinery (SAM) in the outer membrane is required for the membrane insertion of mitochondrial β-barrel proteins.
View Article and Find Full Text PDFEMBO Rep
April 2024
Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany.
Most mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria in a post-translational reaction. Mitochondrial precursor proteins which use the ER-SURF pathway employ the surface of the endoplasmic reticulum (ER) as an important sorting platform. How they reach the mitochondrial import machinery from the ER is not known.
View Article and Find Full Text PDFPLoS Biol
February 2024
Department of Biology, Philipps-University Marburg, Marburg, Germany.
Peroxisomes are organelles with crucial functions in oxidative metabolism. To correctly target to peroxisomes, proteins require specialized targeting signals. A mystery in the field is the sorting of proteins that carry a targeting signal for peroxisomes and as well as for other organelles, such as mitochondria or the endoplasmic reticulum (ER).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!