Mononuclear non-heme iron enzymes catalyze a wide array of important oxidative transformations. They are correspondingly diverse in both structure and mechanism. Despite significant evolutionary distance, it is becoming increasingly apparent that these enzymes nonetheless illustrate a compelling case of mechanistic convergence the formation of peroxo species bridging metal and substrate. Aromatic amino acid hydroxylases and 2-oxoglutarate (2OG)-dependent enzymes, for example, form bridged acyl- or alkylperoxo intermediates en route to highly oxidizing ferryl species, while catechol dioxygenases utilize such 'bridged' peroxos directly. Analogous acylperoxoiron intermediates have also been demonstrated to precede a perferryl oxidant in biomimetic systems. Herein, we synthesize the results of structural, spectroscopic and computational studies on these systems to gain insight into the shared chemical logic that drives iron-peracid formation and reactivity. In all cases, reactions are tuned the electron-donating properties of coordinating ligands. Second-sphere residues have also been demonstrated to modulate the orientation of the bridge, thereby influencing reaction outcomes. The effect of carboxylic acid addition to relevant biomimetic catalyst reactions further underscores these fundamental chemical principles. Altogether, we provide a comprehensive analysis of the cross-cutting mechanisms that guide peroxo formation and subsequent oxidative chemistry performed by non-heme mononuclear iron catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10409238.2025.2455084 | DOI Listing |
Crit Rev Biochem Mol Biol
January 2025
Department of Chemistry, Emory University, Atlanta, GA, USA.
Mononuclear non-heme iron enzymes catalyze a wide array of important oxidative transformations. They are correspondingly diverse in both structure and mechanism. Despite significant evolutionary distance, it is becoming increasingly apparent that these enzymes nonetheless illustrate a compelling case of mechanistic convergence the formation of peroxo species bridging metal and substrate.
View Article and Find Full Text PDFChemistry
January 2025
Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, CHINA.
Dynamic control of DNA circuit functionality is essential for constructing chemical reaction networks (CRNs) that implement complex functions. The triplex has been utilized for dynamically regulating the diverse functionalities of DNA circuits due to its distinctive pH responsiveness. However, it is challenging for triplexes to independently regulate the functionality of DNA circuits, as various triplexes were often required for DNA circuits to function in complex environments, which adds complexity to the design and control of dynamic circuits.
View Article and Find Full Text PDFNanotechnology
January 2025
Nanjing University of Posts and Telecommunications, Nanjing University of Posts and Telecommunications, Kuala Lumpur, Selangor, 50603, MALAYSIA.
Two-dimensional Transition Metal Dichalcogenides (2D TMDs) have garnered significant attention in the field of materials science due to their remarkable electronic and optoelectronic properties, including high carrier mobility and tunable band gaps. Despite the extensive research on various TMDs, there remains a notable gap in understanding the synthesis techniques and their implications for the practical application of monolayer tungsten disulfide (WS2) in optoelectronic devices. This gap is critical, as the successful integration of WS2 into commercial technologies hinges on the development of reliable synthesis methods that ensure high quality and uniformity of the material.
View Article and Find Full Text PDFChembiochem
January 2025
Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Department of Biosynthesis of Natural Products, 1# Xian Nong Tan Street, 100050, Beijing, CHINA.
There is no doubt that breakthroughs in the enzyme-mediated formation of the oxetane ring in paclitaxel biosynthesis constitute significant milestones in the biosynthesis of complex natural products. In this review, we summarize the understanding of the biosynthesis of the oxetane ring of paclitaxel from different viewpoints. Generally, it covers five aspects, (1) a different understanding of the mechanistic formation of the oxetane ring on the basis of sound chemical reasoning, (2) a reasonable speculation of the biosynthetic pathways and suitable surrogate substrates for oxetane ring formation based on the natural and chemical logical analysis, (3) Taxus genome-enabled enzymes identification, (4) the discovery of different enzymes that mediate oxetane ring formation, and (5) a mechanistic investigation involving the use of isotopic labelling experiments and quantum chemical calculations.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Department of Chemistry, Chulalongkorn University, Bangkok, Thailand.
The accumulation pattern of some inorganic pollutants in quarry sites around Ogun State was modeled using a Fuzzy comprehensive assessment (FCA). Potentially toxic elements (PTEs) and naturally occurring radionuclides materials (NORMs) were assessed from soil samples collected from ten quarry sites in three districts (Odeda, Ajebo, and Ijebu Ode) in Ogun State. Three (3) NORMs ( K, U, Th) were assessed using gamma spectrometer with a NaI detector while ten (10) PTEs (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were determined by digestion method using Inductively coupled plasma optical emission spectrophotometer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!