The nuclear pore complex (NPC) is the proteinous nanopore that solely regulates molecular transport between the nucleus and cytoplasm of a eukaryotic cell. Hypothetically, the NPC utilizes the hydrophobic barriers based on the repeats of phenylalanine-glycine (FG) units to selectively and efficiently transport macromolecules. Herein, we quantitatively assess the hydrophobicity of transport barriers confined in the nanopore by applying scanning electrochemical microscopy (SECM). The hypothesis deduced from studies of isolated FG-rich nucleoporins is supported quantitatively by investigating the authentic NPC for the first time. Specifically, we employ the repeats of neurotoxic glycine-arginine dipeptide, GR, as the molecular probes that engage in hydrophobic interactions with transport barriers in the NPC. We apply ion-transfer voltammetry at a micropipet-supported interface between aqueous and organic electrolyte solutions to confirm that larger GR among = 5-25 is more hydrophobic, as expected theoretically. The micropipet also serves as the tip of transient SECM to demonstrate that the NPC interacts more strongly with larger GR, which supports the hydrophobicity of transport barriers. Kinetically, larger GR stays in the NPC for longer to clog the nanopore, thereby expressing neurotoxicity. Significantly, this work implies that the efficient and safe nuclear import of genetic therapeutics requires an optimum balance between strong association with and fast dissociation from the NPC. Interestingly, this work represents the unexplored utility of liquid/liquid interfaces as models of hydrophobic protein condensates based on liquid-liquid phase separation as exemplified by nanoscale transport barriers in the NPC.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c04861DOI Listing

Publication Analysis

Top Keywords

transport barriers
20
hydrophobicity transport
12
nuclear pore
8
pore complex
8
scanning electrochemical
8
electrochemical microscopy
8
npc
8
barriers npc
8
transport
7
barriers
6

Similar Publications

Background: HIV and HBV remain significant public health challenges characterized by high prevalence, morbidity, and mortality, especially among women of reproductive age in Uganda. Patients with HBV do not receive routine counselling and education, and there are limited resources for laboratory investigation coupled with a high loss to follow-up. This study set out to assess barriers and facilitators of integrated viral hepatitis B C and HIV care model to optimize screening uptake among mothers and newborns at health facilities in Koboko District, west Nile sub-region, Uganda.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) adversely affects various organs, including the brain and its blood barrier. In addition to the brain, hyperglycemia damages the testes. The testes possess blood-tissue barriers that share common characteristics and proteins with the blood-brain barrier (BBB), including breast cancer-resistant protein (BCRP).

View Article and Find Full Text PDF

The adenosine triphosphate-binding cassette transporter A7 (ABCA7) gene is ranked as one of the top susceptibility loci for Alzheimer's disease (AD). While ABCA7 mediates lipid transport across cellular membranes, ABCA7 loss of function has been shown to exacerbate amyloid-β (Aβ) pathology and compromise microglial function. Our family-based study uncovered an extremely rare ABCA7 p.

View Article and Find Full Text PDF

Smart self-transforming nano-systems for overcoming biological barrier and enhancing tumor treatment efficacy.

J Control Release

January 2025

State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China. Electronic address:

Nanomedicines need to overcome multiple biological barriers in the body to reach the target area. However, traditional nanomedicines with constant physicochemical properties are not sufficient to meet the diverse and sometimes conflicting requirements during in vivo transport, making it difficult to penetrate various biological barriers, resulting in suboptimal drug delivery efficiency. Smart self-transforming nano-systems (SSTNs), capable of altering their own physicochemical properties (including size, charge, hydrophobicity, stiffness, morphology, etc.

View Article and Find Full Text PDF

Micro(nano)plastics (MNPs), widely distributed in the environment, can be ingested and accumulated by various organisms. Recently, the transgenerational transport of MNPs from parental organisms to their offspring has attracted increasing attention. In this review, we summarize the patterns, specific pathways, and related mechanisms of intergenerational transfer of MNPs in plants, non-mammals (zooplankton and fish) and mammals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!