Palladium-Catalyzed Modular Synthesis of Thiophene-Fused Polycyclic Aromatics via Sequential C-H Activation.

Org Lett

Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.

Published: January 2025

A palladium-catalyzed Catellani-type [2+2+2] annulation reaction of aryl iodides, bromothiophenes, and norbornadiene, which proceeds via a tandem Heck coupling/double C-H bond activation and retro-Diels-Alder pathway to access thiophene-fused polyaromatics, is reported. The key feature of this protocol represents a NBD/NBE retaining annulation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.4c04597DOI Listing

Publication Analysis

Top Keywords

palladium-catalyzed modular
4
modular synthesis
4
synthesis thiophene-fused
4
thiophene-fused polycyclic
4
polycyclic aromatics
4
aromatics sequential
4
sequential c-h
4
c-h activation
4
activation palladium-catalyzed
4
palladium-catalyzed catellani-type
4

Similar Publications

Palladium-Catalyzed Modular Synthesis of Thiophene-Fused Polycyclic Aromatics via Sequential C-H Activation.

Org Lett

January 2025

Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.

A palladium-catalyzed Catellani-type [2+2+2] annulation reaction of aryl iodides, bromothiophenes, and norbornadiene, which proceeds via a tandem Heck coupling/double C-H bond activation and retro-Diels-Alder pathway to access thiophene-fused polyaromatics, is reported. The key feature of this protocol represents a NBD/NBE retaining annulation.

View Article and Find Full Text PDF

Palladium-Catalyzed Oxidative Allene-Allene Cross-Coupling.

J Am Chem Soc

January 2025

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.

Direct cross-coupling reactions between two similar unactivated partners are challenging but constitute a powerful strategy for the creation of new carbon-carbon bonds in organic synthesis. [4]Dendralenes are a class of acyclic branched conjugated oligoenes with great synthetic potential for the rapid generation of structural complexity, yet the chemistry of [4]dendralenes remains an unexplored field due to their limited accessibility. Herein, we report a highly selective palladium-catalyzed oxidative cross-coupling of two allenes with the presence of a directing olefin in one of the allenes, enabling the facile synthesis of a broad range of functionalized [4]dendralenes in a convergent modular manner.

View Article and Find Full Text PDF

Palladium-Catalyzed Dual-Tasked -C-H Borylation of Aryl Iodides.

Org Lett

December 2024

School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, People's Republic of China.

Article Synopsis
  • A new method has been developed for Pd-catalyzed C-H borylation using maleimide to activate C-H bonds in aryl iodides.
  • This reaction allows for the alkylation of -positions and borylation of -C-H bonds, leading to the synthesis of functionalized 3-aryl succinimides, which are important in various organic compounds.
  • The boronate group created in this process can be further modified, showcasing the practical applications and potential of this C-H activation strategy for difunctionalizing aryl halides.
View Article and Find Full Text PDF

We have shown that palladium-catalyzed cascade processes provide modular access to rigid quinoline-containing tetracyclic amines. This modular approach enables fine-tuning of the through-space charge transfer (TSCT) state formation between the lone pair localized on the nitrogen atom in the cage moiety and the quinoline moiety by variation of both the intramolecular -aryl distance and quinoline substitution. Decreasing this -aryl distance enhances the formation of the TSCT species, giving control over the emission color and photoluminescence quantum yield.

View Article and Find Full Text PDF

Transition-metal-catalyzed selective hydroarylation of alkynes represents a state-of-the-art approach in organic chemistry. Herein, we report the reaction of symmetrical 1,3-diynes and arylboronic acids, with Pd(OAc) as the catalyst and PCy as the ligand, affording functionalized enynes in good to excellent yields. Its efficiency is demonstrated by its good functional group tolerance and broad substrate scope.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!