Aim: Development and optimization of raloxifene hydrochloride loaded lipid nanocapsule hydrogel for transdermal delivery.

Method: A 3 Box-Behnken Design and numerical optimization was performed to obtain the optimized formulation. Subsequently, the optimized raloxifene hydrochloride loaded lipid nanocapsule was developed using phase inversion temperature and characterized for physicochemical properties. Furthermore, the optimized lipid nanocapsule was loaded into a hydrogel and evaluated for rheology, spreadability, ex-vivo skin permeation, deposition and irritation.

Results: The numerical optimization suggested an optimal formula with desirability value of 0.852 and low prediction errors. The optimized formulation showed good % drug entrapment efficiency (79.56 ± 2.34%), nanometer size (56.68 ± 1.2 nm), monodisperse nature (PDI = 0.176 ± 0.2), spherical morphology and good drug-excipient compatibility. The raloxifene hydrochloride loaded lipid nanocapsule hydrogel showed shear thinning properties, sustained drug delivery, dermal compatibility and significantly higher permeability (2-fold), retention (3.37) for raloxifene hydrochloride compared to the control.

Conclusion: The present study showed a successful development of raloxifene hydrochloride loaded lipid nanocapsule hydrogel with improved skin permeation, retention, and good topical compatibility. This formulation may overcome the challenges associated with raloxifene hydrochloride oral delivery including low bioavailability.

Download full-text PDF

Source
http://dx.doi.org/10.1080/20415990.2025.2457312DOI Listing

Publication Analysis

Top Keywords

raloxifene hydrochloride
28
lipid nanocapsule
24
hydrochloride loaded
20
loaded lipid
20
nanocapsule hydrogel
12
development optimization
8
optimization raloxifene
8
hydrogel transdermal
8
numerical optimization
8
optimized formulation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!