Recent theory and experiments have shown how the buildup of a high-concentration polymer layer at a one-dimensional solvent-air interface can lead to an evaporation rate that scales with time as and that is insensitive to the ambient humidity. Using phase field modelling we show that this scaling law constitutes a naturally emerging robust regime, diffusion-limited evaporation (DLE). This regime dominates the dynamical state diagram of the system, which also contains regions of constant and arrested evaporation, confirming and extending understanding of recent experimental observations and theoretical predictions. We provide a theoretical argument to show that the scaling observed in the DLE regime occurs for a wide range of parameters, and our simulations predict that it can occur in two-dimensional geometries as well. Finally, we discuss possible extensions to more complex systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4sm01215a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!