Innovative epitopes in Protein-A an immuno-informatics approach to combat MDR-MRSA infections.

Front Cell Infect Microbiol

Department of Haematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China.

Published: January 2025

Background: Methicillin-resistant (MRSA) poses a significant challenge in clinical environments due to its resistance to standard antibiotics. Protein A (SpA), a crucial virulence factor of MRSA, undermines host immune responses, making it an attractive target for vaccine development. This study aimed to identify potential epitopes within SpA that could elicit robust immune responses, ultimately contributing to the combat against multidrug-resistant (MDR) MRSA.

Methods: The SpA protein sequence was retrieved from the UniProt database, with various bioinformatics tools employed for epitope prediction. T-cell epitopes were identified using the Tepitool server, focusing on high-affinity interactions with prevalent human leukocyte antigens (HLAs). B-cell epitopes were predicted using the BepiPred tool. Predicted epitopes underwent docking studies with HLA molecules to evaluate binding properties. In-silico analyses confirmed the antigenicity, promiscuity, and non-glycosylated nature of the selected epitopes.

Results: Several T and B cell epitopes within SpA were identified, showcasing high binding affinities and extensive population coverage. A multi-epitope vaccine construct, linked by synthetic linkers and an adjuvant, was modelled, refined, and validated through various bioinformatics assessments. The vaccine candidate was subsequently docked with Toll-like receptor 4 (TLR-4) to evaluate its potential for immunogenicity.

Conclusion: This study lays the groundwork for developing epitope-based vaccines targeting SpA in MRSA, identifying promising candidates for experimental validation and contributing to innovative immunotherapeutic strategies against MRSA infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772303PMC
http://dx.doi.org/10.3389/fcimb.2024.1503944DOI Listing

Publication Analysis

Top Keywords

immune responses
8
epitopes spa
8
spa
5
epitopes
5
innovative epitopes
4
epitopes protein-a
4
protein-a immuno-informatics
4
immuno-informatics approach
4
approach combat
4
combat mdr-mrsa
4

Similar Publications

Background: Enterovirus 71 (EV71) is one of the major causative agents of hand, foot, and mouth disease (HFMD), and can cause severe cerebral complications and even fatality in children younger than 5 years old. However, there is no specific medication for EV71 infection in clinical practice. Our previous studies had identified the 6-thioguanine (6-TG), an FDA-approved anticancer drug, as a potential antiviral agent, but its anti-EV71 activity is largely unknown, therefore, we aim to explore the antiviral effect of 6-TG on EV71.

View Article and Find Full Text PDF

Early investigation revealed a reduced risk of SARS-CoV-2 infection among social contacts of COVID-19 vaccinated individuals, referred to as indirect protection. However, indirect protection from SARS-CoV-2 infection-acquired immunity and its comparative strength and durability to vaccine-derived indirect protection in the current epidemiologic context of high levels of vaccination, prior infection, and novel variants are not well characterized. Here, we show that both vaccine-derived and infection-acquired immunity independently yield indirect protection to close social contacts with key differences in their strength and waning.

View Article and Find Full Text PDF

Since the onset of the pandemic, many SARS-CoV-2 variants have emerged, exhibiting substantial evolution in the virus' spike protein, the main target of neutralizing antibodies. A plausible hypothesis proposes that the virus evolves to evade antibody-mediated neutralization (vaccine- or infection-induced) to maximize its ability to infect an immunologically experienced population. Because viral infection induces neutralizing antibodies, viral evolution may thus navigate on a dynamic immune landscape that is shaped by local infection history.

View Article and Find Full Text PDF

Zoonoses are infectious diseases transmitted from animals to humans. Bats have been suggested to harbour more zoonotic viruses than any other mammalian order. Infections in bats are largely asymptomatic, indicating limited tissue-damaging inflammation and immunopathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!