Zinc (Zn) and its alloys have been the focus of recent materials and manufacturing research for orthopaedic implants due to their favorable characteristics including desirable mechanical strength, biodegradability, and biocompatibility. In this research, a novel process involving additive manufacturing (AM) augmented casting was employed to fabricate zinc-magnesium (Zn-0.8 Mg) artifacts with surface lattices composed of triply periodic minimal surfaces (TPMS), specifically gyroid. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analysis confirmed that Zn-Mg intermetallic phases formed at the grain boundary. Micro indentation testing resulted in hardness value ranging from 83.772 to 99.112 HV and an elastic modulus varying from 92.601 to 94.625 GPa. Results from in vitro cell culture experiments showed that cells robustly survived on both TPMS and solid scaffolds, confirming the suitability of the material and structure as biomedical implants. This work suggests that this novel hybrid manufacturing process may be a viable approach to fabricating next generation biodegradable orthopaedic implants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756471 | PMC |
http://dx.doi.org/10.1007/s44164-024-00077-0 | DOI Listing |
Adv Drug Deliv Rev
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 637459 Singapore; Critical Analytics for Manufacturing Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Campus for Research Excellence and Technological Enterprise 138602 Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University 308232 Singapore; School of Materials Science and Engineering 639798 Singapore; National Neuroscience Institute, 11 Jalan Tan Tock Seng 308433 Singapore. Electronic address:
Combinatorial treatments integrating cells and biomolecules within scaffolds have been investigated to address the multifactorial nature of spinal cord injury (SCI). Current regenerative treatments have been ineffective as they do not consider the spatial positions of various cell types to effectively form functional neural pathways. Emulating the complex heterogeneity of cells in the native spinal cord requires translating the existing biological understanding of spatial patterning in neural development, as well as the influence of biomolecule and mechanical patterning on regional specification and axonal regeneration, to engineer a scaffold for spinal cord regeneration.
View Article and Find Full Text PDFInt J Pharm
January 2025
EPSRC CMAC Future Manufacturing Research Hub, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 99 George Street, Glasgow G1 1RD UK; The Cancer Research UK Formulation Unit, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE UK.
Oral drug delivery remains the preferred method of drug administration but due to poor solubility many active pharmaceutical ingredients (APIs) are ill suited to this. A number of methods to improve solubility of poorly soluble Biopharmaceutical Classification System (BCS) Class II drugs already exist but there is a lack of scalable, flexible methods. As such the current study applies the innovative technique of aerosol jet printing to increase the dissolution capabilities of a Class II drug in a manner which permits flexibility to allow dosage form tailoring.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, McGill University, Montréal, Québec H3A 0G4, Canada.
Metal powders are crucial precursors for manufacturing surfaces through thermal spraying, cold spraying, and 3D printing methods. However, surface oxidation of these precursors poses a challenge to the coherence of the metallic materials during manufacturing processes. Herein, we introduce a method for surface modification of copper powder with N-heterocyclic carbenes (NHCs) using mechanochemistry to mitigate surface oxidation.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials Shanghai, Fudan University, Shanghai 200433, PR China.
ConspectusZinc metal batteries (ZMBs) appear to be promising candidates to replace lithium-ion batteries owing to their higher safety and lower cost. Moreover, natural reserves of Zn are abundant, being approximately 300 times greater than those of Li. However, there are some typical issues impeding the wide application of ZMBs.
View Article and Find Full Text PDFOrthopadie (Heidelb)
January 2025
Klinik für Handchirurgie und Orthopädie, Spital Langenthal, Spital Region Oberaargau SRO AG, Langenthal, Schweiz.
Pain around the first ray of the hand, particularly in the thumb area, is a frequent clinical problem that can have various causes. This article explores the most important differential diagnoses, including thumb carpometacarpal (CMC-I) osteoarthritis (rhizarthrosis), de Quervain's stenosing tenosynovitis, carpal tunnel syndrome and Wartenberg's syndrome. A detailed medical history, targeted clinical examination and if necessary the use of modern imaging techniques are crucial for making the diagnosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!