Objectives: Ischemia/reperfusion (IR)-induced ventricular arrhythmia, which mainly occurs after the opening of coronary artery occlusion, poses a clinical problem. This study aims to investigate the effectiveness of pretreatment with coenzyme Q (CoQ) in combination with mitochondrial transplantation on IR-induced ventricular arrhythmias in aged rats.

Materials And Methods: Myocardial IR induction was performed by left anterior descending coronary artery occlusion for 30 min, followed by re-opening for 24 hr. CoQ was administered intraperitoneally at a dosage of 10 mg/kg/day for two weeks before inducing IR. At the start of reperfusion, 500 µl of the respiration buffer containing 6×10±5×10 mitochondria/ml of respiration buffer harvested from the pectorals major muscle of young donor rats were injected intramyocardially. To investigate arrhythmias, the heart's electrical activity during ischemia and the first 30 min of reperfusion were recorded by electrocardiogram. After 24 hr of reperfusion, cardiac histopathological changes, creatine kinase-MB, nitric oxide metabolites (NOx), oxidative stress markers (malondialdehyde, total anti-oxidant, superoxide dismutase, and glutathione peroxidase), and the expression of genes regulating mitochondrial fission/fusion were measured.

Results: Pretreatment with CoQ in combination with mitochondrial transplantation reduced ventricular arrhythmias, cardiac histopathological changes, and creatine kinase-MB levels. Simultaneously, this combined therapeutic approach increased myocardial NOx levels, fostering an improved oxidative balance. It also triggered the down-regulation of mitochondrial fission genes, coupled with the up-regulation of mitochondrial fusion genes.

Conclusion: The combination of CoQ and mitochondrial transplantation demonstrated a notable anti-arrhythmic effect by elevating NOx levels, reducing oxidative stress, and improving mitochondrial fission/fusion in aged rats with myocardial IRI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771340PMC
http://dx.doi.org/10.22038/ijbms.2024.80092.17348DOI Listing

Publication Analysis

Top Keywords

mitochondrial transplantation
16
mitochondrial
8
arrhythmias aged
8
aged rats
8
ir-induced ventricular
8
coronary artery
8
artery occlusion
8
coq combination
8
combination mitochondrial
8
ventricular arrhythmias
8

Similar Publications

AP39, a novel mitochondria-targeted hydrogen sulfide donor, promotes cutaneous wound healing in an in vivo murine model of acute frostbite injury.

Biomed Pharmacother

January 2025

Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada. Electronic address:

Frostbite injury refers to cold tissue injury which typically affects the peripheral areas of the body, and is associated with limb loss and high rates of morbidity. Historically, treatment options have been limited to supportive care, leading to suboptimal outcomes for affected patients. The pathophysiology of frostbite injury has been understood in recent years to share similarity with that of cold ischemia-reperfusion injury as seen in solid organ transplantation, of which mitochondria play an important contributing role.

View Article and Find Full Text PDF

Objectives: Ischemia/reperfusion (IR)-induced ventricular arrhythmia, which mainly occurs after the opening of coronary artery occlusion, poses a clinical problem. This study aims to investigate the effectiveness of pretreatment with coenzyme Q (CoQ) in combination with mitochondrial transplantation on IR-induced ventricular arrhythmias in aged rats.

Materials And Methods: Myocardial IR induction was performed by left anterior descending coronary artery occlusion for 30 min, followed by re-opening for 24 hr.

View Article and Find Full Text PDF

Background: Primary coenzyme Q10 (CoQ10) deficiency is an autosomal recessive genetic disease caused by mitochondrial dysfunction. Variants in Coenzyme Q8B () can cause primary CoQ10 deficiency. -related glomerulopathy is a recently recognized glomerular disease that most often presents as steroid-resistant nephrotic syndrome (SRNS) in childhood.

View Article and Find Full Text PDF

Deciphering the complex clonal heterogeneity of polycythemia vera and the response to interferon alpha.

Blood Adv

January 2025

Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.

Interferon alpha (IFNa) is approved for the therapy of patients (pts) with polycythemia vera (PV), a subtype of myeloproliferative neoplasms (MPN). Some pts achieve molecular responses (MR), but clonal factors sensitizing for MR remain elusive. We integrated colony formation and differentiation assays with single-cell RNA seq and genotyping in PV-derived cells vs.

View Article and Find Full Text PDF

Mitochondrial transplantation (MT) is a promising therapeutic strategy that involves introducing healthy mitochondria into damaged tissues to restore cellular function. This approach has shown promise in treating cardiac diseases, such as ischemia-reperfusion injury, myocardial infarction, and heart failure, where mitochondrial dysfunction plays a crucial role. Transplanting healthy mitochondria into affected cardiac tissue has resulted in improved cardiac function, reduced infract size, and enhanced cell survival in preclinical studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!