While CuS/TiO₂ has been previously synthesized and employed in a limited number of photodegradation studies, the current study investigated its effectiveness for TC degradation under UV-visible light irradiation. CuS is known to be a nontoxic, environmentally friendly material; hence, it has great potential as an alternative to CdS and CdSe, which are used conventionally as sensitizers. In this work, the CuS/TiO₂ photocatalysts achieved a maximum 95 % removal of TC at an initial concentration of 20 ppm, confirming the good utilization of active sites. Even though the efficiency decreased for higher TC concentrations due to the saturation of the active sites, the values of the quantum yield showed that photon utilization was still effective. Consequently, the photocatalyst showed an optimum yield at 0.20 g, and its further addition increased the efficiency rather insignificantly. In addition to the near-complete mineralization of TC by the CuS/TiO₂ composite with few byproducts, its reusability was excellent because it showed almost consistent performance in successive cycles. These results further confirm the continuous relevance and potential of CuS/TiO₂ as a practical, sustainable solution for organic pollutant degradation, reinforcing its value in environmental remediation applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773078PMC
http://dx.doi.org/10.1016/j.heliyon.2025.e41662DOI Listing

Publication Analysis

Top Keywords

active sites
8
photodegradation aqueous
4
aqueous tetracycline
4
tetracycline cus@tio₂
4
cus@tio₂ composite
4
composite solar-simulated
4
solar-simulated light
4
light complete
4
complete mineralization
4
mineralization catalyst
4

Similar Publications

Site-Selective and High-Density Gold Nanoparticle Photodeposition on the Edges of ZnO Nanowires.

J Phys Chem Lett

January 2025

Graduate School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan.

Selective modification of chemically active sites on supports, such as steps, edges, and corners, with metal nanoparticles (NPs) is a challenging topic in the fields of catalysis and photocatalysis. However, the formation of site-selective, high-density metal NPs on a support has not yet been achieved. Radial ZnO mesocrystals composed of hexagonal nanowires (NWs) with {101̅0} sidewalls were synthesized by a simple solution-phase method.

View Article and Find Full Text PDF

Quantum crystallography methods have been employed to investigate complex formation between nonsteroidal anti-inflammatory drugs (NSAIDs) and cyclooxygenase (COX) enzymes, with particular focus on the COX-1 and COX-2 isoforms. This study analyzed the electrostatic interaction energies of selected NSAIDs (flurbiprofen, ibuprofen, meloxicam and celecoxib) with the active sites of COX-1 and COX-2, revealing significant differences in binding profiles. Flurbiprofen exhibited the strongest interactions with both COX-1 and COX-2, indicating its potent binding affinity.

View Article and Find Full Text PDF

SARS-CoV-2 variant recurrence has emphasized the imperative prerequisite for effective antivirals. The main protease (Mpro) of SARS-CoV-2 is crucial for viral replication, making it one of the prime and promising antiviral targets. Mpro features several druggable sites, including active sites and allosteric sites near the dimerization interface, that regulate its catalytic activity.

View Article and Find Full Text PDF

Methane (CH), which is the main component of natural gas, is an abundant and widely available carbon resource. However, CH has a low energy density of only 36 kJ L under ambient conditions, which is significantly lower than that of gasoline (. 34 MJ L).

View Article and Find Full Text PDF

An interesting approach of including an upconverter in the MoS counter electrode can yield broadband light harvesting Pt-free DSSC assembly. Here different upconverter (UC) nanoparticles (Yb, Er incorporated NaYF, YF, CeO & YO) were synthesized and loaded in MoS thin film by hydrothermal method. The inclusion of UCs in MoS films exposed without any secondary formation of upconverters and the uniform deposition of the films are confirmed through XRD and FESEM analysis respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!