From pain to meningitis: bacteria hijack nociceptors to promote meningitis.

Front Immunol

National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China.

Published: January 2025

Bacterial meningitis is a severe and life-threatening infection of the central nervous system (CNS), primarily caused by and . This condition carries a high risk of mortality and severe neurological sequelae, such as cognitive impairment and epilepsy. Pain, a central feature of meningitis, results from the activation of nociceptor sensory neurons by inflammatory mediators or bacterial toxins. These nociceptors, abundantly present in the meninges, trigger neuroimmune signaling pathways that influence the host immune response. However, the mechanisms by which bacteria hijack these nociceptors to promote CNS invasion and exacerbate the disease remain poorly understood. This review examines the interactions between bacteria and meningeal nociceptors, focusing on their direct and indirect activation via ion channels, such as transient receptor potential vanilloid-1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1), or through the release of neuropeptides like calcitonin gene-related peptide (CGRP). These interactions suppress immune defenses by inhibiting macrophage activity and neutrophil recruitment, thus facilitating bacterial survival and invasion of the CNS. Understanding this neuroimmune axis may open potential therapeutic targets for treating bacterial meningitis by enhancing host defenses and mitigating pain. Further research using advanced methodologies is essential to clarify the role of nociceptor-mediated immune modulation in this disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772308PMC
http://dx.doi.org/10.3389/fimmu.2024.1515177DOI Listing

Publication Analysis

Top Keywords

bacteria hijack
8
hijack nociceptors
8
nociceptors promote
8
bacterial meningitis
8
transient receptor
8
receptor potential
8
pain meningitis
4
meningitis bacteria
4
nociceptors
4
meningitis
4

Similar Publications

subverts the antioxidant defenses of its amoeba host .

Curr Res Microb Sci

January 2025

Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, France.

, the causative agent of Legionnaires' disease, interacts in the environment with free-living amoebae that serve as replicative niches for the bacteria. Among these amoebae, is a natural host in water networks and a model commonly used to study the interaction between and its host. However, certain crucial aspects of this interaction remain unclear.

View Article and Find Full Text PDF

From pain to meningitis: bacteria hijack nociceptors to promote meningitis.

Front Immunol

January 2025

National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China.

Bacterial meningitis is a severe and life-threatening infection of the central nervous system (CNS), primarily caused by and . This condition carries a high risk of mortality and severe neurological sequelae, such as cognitive impairment and epilepsy. Pain, a central feature of meningitis, results from the activation of nociceptor sensory neurons by inflammatory mediators or bacterial toxins.

View Article and Find Full Text PDF

Virus budding is a critical step in the replication cycle of enveloped viruses, closely linked to viral spread, disease progression, and clinical outcomes. The budding of many enveloped RNA viruses is facilitated by the hijacking of the host endosomal sorting complex required for transport (ESCRT) proteins through viral late domains. These late domains are essential for progeny virus production and are highly conserved, making the interaction between late domains and host ESCRT proteins a potential target for the development of antiviral therapeutics.

View Article and Find Full Text PDF

Equine Infectious Anemia Virus Cellular Partners Along the Viral Cycle.

Viruses

December 2024

ANSES Animal Health Laboratory, PhEED Unit, 14430 Goustranville, France.

Equine infectious anemia virus (EIAV) is the simplest described within the family, related to the human immunodeficiency viruses (HIV-1 and HIV-2). There is an important interplay between host cells and viruses. Viruses need to hijack cellular proteins for their viral cycle completion and some cellular proteins are antiviral agents interfering with viral replication.

View Article and Find Full Text PDF

Gram-negative bacterial pathogens inject effector proteins inside plant cells using a type III secretion system. These effectors manipulate plant cellular functions and suppress the plant immune system in order to promote bacterial proliferation. Despite the fact that bacterial effectors are exogenous threatening proteins potentially exposed to the protein degradation systems inside plant cells, effectors are relative stable and able to perform their virulence functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!