Prolonged exposure to high environmental temperatures results in an accumulated heat load that induces a heat stress (HS) response in dairy cattle. Heat stress compromises dairy farm profitability by reducing milk yield, altering milk composition, and hindering reproductive performance. The ability to alternate between carbohydrate and lipid sources for energy production is termed metabolic flexibility (Met Flex). The objective of this study was to evaluate the Met Flex of mammary, muscle, and liver tissue in lactating dairy cows under HS and thermoneutral (TN) conditions. Sixteen Holstein cows were assigned to 1 of 2 treatment groups: pair-feeding in TN conditions (PFTN) or HS conditions. All cows experienced a 4-d TN period with ad libitum intake followed by a 4-d treatment period. Heat stress cows were exposed to a temperature-humidity index (THI) ranging from 76 to 80 and the PFTN cows were exposed to a THI of 64. Milk production and health data were recorded twice daily. Semitendinosus biopsies were obtained on d 4 of each period and postmortem mammary and liver samples were obtained on d 4 of period 2. All tissue samples were assayed for Met Flex. Activity of mitochondrial (Mit) enzymes were assessed in skeletal muscle only. Four days of HS decreased milk yield, altered milk composition, and increased respiration rate and rectal temperatures. No differences in Met Flex were observed in mammary or liver tissue during period 2. However, HS, but not PFTN conditions, lowered Met Flex of skeletal muscle by 18.3% when compared with TN ad libitum feed intake conditions of period 1. No treatment differences were observed in skeletal muscle Mit enzyme activity indicating the decrease in Met Flex occurred independently of changes in Mit function. The reduction in Met Flex of skeletal muscle during HS may contribute to reduced milk yield and warrants further investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770320 | PMC |
http://dx.doi.org/10.3168/jdsc.2024-0631 | DOI Listing |
JDS Commun
January 2025
School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061.
Prolonged exposure to high environmental temperatures results in an accumulated heat load that induces a heat stress (HS) response in dairy cattle. Heat stress compromises dairy farm profitability by reducing milk yield, altering milk composition, and hindering reproductive performance. The ability to alternate between carbohydrate and lipid sources for energy production is termed metabolic flexibility (Met Flex).
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Medical College, Tibet University, Lhasa, Tibet, 850000, China.
Background: Knee osteoarthritis (KOA) is a prevalent degenerative joint disease. The primary pathological manifestations of KOA include articular cartilage degeneration, joint space narrowing, and osteophyte formation, leading to a spectrum of symptoms, including joint pain, stiffness, reduced mobility, diminished muscle strength, and severe disability. We aimed to utilize a meta-analysis to evaluate the efficacy of isokinetic muscle strengthening training (IMST) as a rehabilitation treatment for KOA in lowland areas.
View Article and Find Full Text PDFClin Chem Lab Med
December 2024
Department of Clinical Chemistry, 162073 Sestre Milosrdnice University Hospital Center, Zagreb, Croatia.
Objectives: Autoverification increases the efficiency of laboratories. Laboratories accredited according to ISO 15189:2022 need to validate their processes, including autoverification, and assess the associated risks to patient safety. The aim of this study was to propose a systematic verification algorithm for autoverification and to assess its potential risks.
View Article and Find Full Text PDFCytotherapy
December 2024
Terumo Blood and Cell Technologies, Inc., Lakewood, Colorado, USA.
Background Aims: The need for large-scale production of mesenchymal stromal cell (MSC)-based cellular therapeutics continues to grow around the globe. Manual cell expansion processes can be highly variable between operators, require significant hands-on time from skilled staff and, because of the large number of open manipulation steps required to produce cells in dose-relevant quantities, be prone to greater risk of contamination relative to automated processes. All of these can increase overall production costs and risks to the patient.
View Article and Find Full Text PDFMed J Malaysia
March 2024
Universiti Teknologi MARA, Faculty of Health Sciences, Centre for Medical Imaging Studies, Puncak Alam Campus, Selangor, Malaysia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!