Carbon-carbon (C/C) composites are attractive materials for high-speed flights and terrestrial atmospheric reentry applications due to their insulating thermal properties, thermal resistance, and high strength-to-weight ratio. It is important to understand the evolving structure-property correlations in these materials during pyrolysis, but the extreme laboratory conditions required to produce C/C composites make it difficult to quantify the properties . This work presents an atomistic modeling methodology to pyrolyze a crosslinked phenolic resin network and track the evolving thermomechanical properties of the skeletal matrix during simulated pyrolysis. First, the crosslinked resin is pyrolyzed and the resulting char yield and mass density are verified to match experimental values, establishing the model's powerful predictive capabilities. Young's modulus, yield stress, Poisson's ratio, and thermal conductivity are calculated for the polymerized structure, intermediate pyrolyzed structures, and fully pyrolyzed structure to reveal structure-property correlations, and the evolution of properties are linked to observed structural features. It is determined that reduction in fractional free volume and densification of the resin during pyrolysis contribute significantly to the increase in thermomechanical properties of the skeletal phenolic matrix. A complex interplay of the formation of six-membered carbon rings at the expense of five and seven-membered carbon rings is revealed to affect thermal conductivity. Increased anisotropy was observed in the latter stages of pyrolysis due to the development of aligned aromatic structures. Experimentally validated predictive atomistic models are a key first step to multiscale process modeling of C/C composites to optimize next-generation materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770810PMC
http://dx.doi.org/10.1039/d4na00824cDOI Listing

Publication Analysis

Top Keywords

structure-property correlations
12
c/c composites
12
phenolic resin
8
thermomechanical properties
8
properties skeletal
8
thermal conductivity
8
carbon rings
8
properties
5
investigating structure-property
4
pyrolyzed
4

Similar Publications

Quantitative structure-property relationship (QSPR) modeling has emerged as a pivotal tool in the field of medicinal chemistry and drug design, offering a predictive framework for understanding the correlation between chemical structure and physicochemical properties. Topological indices are mathematical descriptors derived from the molecular graphs that capture structural features and connectivity, playing a crucial role in QSPR analysis by quantitatively relating chemical structures to their physicochemical properties and biological activities. Lung cancer is characterized by its aggressive nature and late-stage diagnosis, often limiting treatment options and significantly impacting patient survival rates.

View Article and Find Full Text PDF

Carbon-carbon (C/C) composites are attractive materials for high-speed flights and terrestrial atmospheric reentry applications due to their insulating thermal properties, thermal resistance, and high strength-to-weight ratio. It is important to understand the evolving structure-property correlations in these materials during pyrolysis, but the extreme laboratory conditions required to produce C/C composites make it difficult to quantify the properties . This work presents an atomistic modeling methodology to pyrolyze a crosslinked phenolic resin network and track the evolving thermomechanical properties of the skeletal matrix during simulated pyrolysis.

View Article and Find Full Text PDF

New developments in the field of chemical graph theory have made it easier to comprehend how chemical structures relate to the graphs that underlie them on a more profound level using the ideas of classical graph theory. Chemical graphs can be effectively probed with the help of quantitative structure-property relationship (QSPR) analysis. In order to statistically correlate physical attributes.

View Article and Find Full Text PDF

This study investigates the influence of printing parameters on the tensile properties and void architecture of poly(lactic) acid (PLA) parts fabricated using the fused filament fabrication (FFF) technique. Two Taguchi optimisation methods were employed to identify the optimal parameter combinations for maximising tensile performance. The results revealed a positive correlation between tensile performance and nozzle diameter (ND).

View Article and Find Full Text PDF

Organic mixed ionic-electronic conductors (OMIECs) are crucial in defining the operational modes and performance of organic electrochemical transistors (OECTs). However, studies on the design and structure-performance correlations of small-molecule n-type OMIECs remain scarce. Herein, we designed and synthesized a series of naphthalene diimide (NDI)-based n-type small molecules by extending π-conjugation and increasing the number of electron-withdrawing groups, achieving performance optimization and even changes in operational modes through structural regulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!